首页> 外文OA文献 >A METHOD OF BUILDING DETECTION IN REMOTE SENSING IMAGES BASED ON DEEP LEARNING WITH MULTIPLE LIGHTNESS DETECTORS
【2h】

A METHOD OF BUILDING DETECTION IN REMOTE SENSING IMAGES BASED ON DEEP LEARNING WITH MULTIPLE LIGHTNESS DETECTORS

机译:基于多亮度检测器的深度学习遥感图像建设检测方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Buildings, where most human activities happen, are one of the most important crucial objects in remote sensing images. Extracting building information is of great significance importance for conducting sustainable development-related researches. The extracted building information is a fundamental data source for further researches, including evaluating the living conditions of people, monitoring building conditions, predicting disaster risks and so on. In recent years, convolutional neural networks have been widely employed in building detection, and have gained significant progresses. However, in these automatic detection procedures, the critical brightness information is often neglected, with all buildings simply classified into the same category. To make the building detection more efficient and precise, we propose a simple yet efficient multitask method employing several lightness detectors, each of which is dedicated to the building detection in a specific brightness interval. Experiment results show that the building detection accuracy could be improved by 8.1% with the assistance of the additional lightness information.
机译:大多数人类活动发生的建筑物是遥感图像中最重要的重要物体之一。提取建筑信息对于开展可持续发展相关的研究具有重要意义。提取的建筑信息是进一步研究的基本数据来源,包括评估人们的生活条件,监测建筑条件,预测灾害风险等。近年来,卷积神经网络已广泛用于建筑检测,并取得了重大进展。然而,在这些自动检测程序中,临界亮度信息通常被忽略,所有建筑物都只是分类为相同的类别。为了使建筑检测更高效,精确,我们提出了一种采用多个亮度检测器的简单且高效的多任务方法,每个方法都专用于特定亮度间隔中的建筑物检测。实验结果表明,在附加亮度信息的帮助下,建筑物检测精度可以提高8.1%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号