首页> 外文OA文献 >Devolatilization of Residual Biomasses for Chemical Looping Gasification in Fluidized Beds Made Up of Oxygen-Carriers
【2h】

Devolatilization of Residual Biomasses for Chemical Looping Gasification in Fluidized Beds Made Up of Oxygen-Carriers

机译:流化床中化学环状气化的残留生物质的脱挥发型由氧载体组成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The chemical looping gasification of residual biomasses—operated in fluidized beds composed of oxygen-carriers—may allow the production of biofuels from syngas. This biomass-to-fuel chain can contribute to mitigate climate change, avoiding the accumulation of greenhouse gases in our atmosphere. The ongoing European research project Horizon2020 CLARA (G.A. 817841) investigates wheat-straw-pellets (WSP) and raw-pine-forest-residue (RPR) pellets as feedstocks for chemical looping gasification. This work presents experimental results from devolatilizations of WSP and RPR, in bubbling beds made of three different oxygen-carriers or sand (inert reference), at 700, 800, 900 °C. Devolatilization is a key step of gasification, influencing syngas quality and quantity. Tests were performed at laboratory-scale, by a quartz reactor (fluidizing agent: N2). For each pellet, collected data allowed the quantification of released gases (H2, CO, CO2, CH4, hydrocarbons) and mass balances, to obtain gas yield (ηav), carbon conversion (χavC), H2/CO ratio (λav) and syngas composition. A simplified single-first order-reaction model was adopted to kinetically analyze experimental data. WSP performed as RPR; this is a good indication, considering that RPR is similar to commercial pellets. Temperature is the dominating parameter: at 900 °C, the highest quality and quantity of syngas was obtained (WSP: ηav = 0.035–0.042 molgas gbiomass−1, χavC = 73–83%, λav = 0.8–1.0); RPR: ηav = 0.036–0.041 molgas gbiomass−1, χavC = 67–71%, λav = 0.9–1.0), and oxygen-carries generally performed better than sand. The kinetic analysis suggested that the oxygen-carrier ilmenite ensured the fastest conversion of C and H atoms into gases, at tested conditions.
机译:在由氧载体组成的流化床中操作的剩余生物质的化学环状气化 - 可以允许从合成气中生产生物燃料。这种生物质对燃料链可以有助于减轻气候变化,避免在我们的大气中积累温室气体。正在进行的欧洲研究项目Horizo​​ n2020 Clara(G.A.817841)调查小麦 - 秸秆颗粒(WSP)和原始松树林 - 残留物(RPR)颗粒作为化学环路气化的原料。该工作介绍了WSP和RPR的脱挥发型的实验结果,在冒泡床中由三种不同的氧 - 载体或砂(惰性参考),700,800,900℃。脱挥发化是气化的关键步骤,影响合成气质量和数量。通过石英反应器(流化剂:N 2)在实验室标度下进行试验。对于每个颗粒,收集的数据允许定量释放的气体(H2,CO,CO 2,CH 4,烃)和质量平衡,以获得气体产率(ηav),碳转化(χavc),H2 / CO比(λav)和合成气作品。通过简化的单一第一阶阶反应模型用于动力学分析实验数据。 WSP作为RPR执行;考虑到RPR类似于商业颗粒,这是一个很好的指示。温度是主导参数:在900°C时,获得最高质量和合成气量(WSP:ηav= 0.035-0.042 Molgas Gbiomass-1,χavc= 73-83%,λav= 0.8-1.0); RPR:ηav= 0.036-0.041 Molgas Gbiomass-1,χavc= 67-71%,λav= 0.9-1.0),并且氧气 - 携带通常比沙子更好。动力学分析表明氧载体钛铁矿确保在测试条件下确保C和H原子最快转化为气体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号