首页> 外文OA文献 >Machine Learning-Based Integration of High-Resolution Wildfire Smoke Simulations and Observations for Regional Health Impact Assessment
【2h】

Machine Learning-Based Integration of High-Resolution Wildfire Smoke Simulations and Observations for Regional Health Impact Assessment

机译:基于机器学习的高分辨率野火烟雾模拟与区域健康影响评估的观察

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Large wildfires are an increasing threat to the western U.S. In the 2017 fire season, extensive wildfires occurred across the Pacific Northwest (PNW). To evaluate public health impacts of wildfire smoke, we integrated numerical simulations and observations for regional fire events during August-September of 2017. A one-way coupled Weather Research and Forecasting and Community Multiscale Air Quality modeling system was used to simulate fire smoke transport and dispersion. To reduce modeling bias in fine particulate matter (PM2.5) and to optimize smoke exposure estimates, we integrated modeling results with the high-resolution Multi-Angle Implementation of Atmospheric Correction satellite aerosol optical depth and the U.S. Environmental Protection Agency AirNow ground-level monitoring PM2.5 concentrations. Three machine learning-based data fusion algorithms were applied: An ordinary multi-linear regression method, a generalized boosting method, and a random forest (RF) method. 10-Fold cross-validation found improved surface PM2.5 estimation after data integration and bias correction, especially with the RF method. Lastly, to assess transient health effects of fire smoke, we applied the optimized high-resolution PM2.5 exposure estimate in a short-term exposure-response function. Total estimated regional mortality attributable to PM2.5 exposure during the smoke episode was 183 (95% confidence interval: 0, 432), with 85% of the PM2.5 pollution and 95% of the consequent multiple-cause mortality contributed by fire emissions. This application demonstrates both the profound health impacts of fire smoke over the PNW and the need for a high-performance fire smoke forecasting and reanalysis system to reduce public health risks of smoke hazards in fire-prone regions.
机译:大型野火是对美国西部的巨大威胁。在2017年的火季,野火发生在太平洋西北地区(PNW)。为了评估野火烟雾的公共卫生影响,我们在2017年8月至9月综合了野火烟雾的影响和观察区域火灾事件。使用单向耦合天气研究和预测和社区多尺度空气质量建模系统来模拟火灾烟雾运输分散。为了减少细颗粒物质(PM2.5)中的建模偏压并优化烟雾曝光估计,我们将建模结果与大气校正卫星气泡光学深度和美国环保机构Airnow地面水平的高分辨率多角度实现集成了建模结果监测PM2.5浓度。应用了三种基于机器学习的数据融合算法:普通的多线性回归方法,广义升压方法和随机林(RF)方法。 10倍交叉验证发现数据集成和偏置校正后改进的表面PM2.5估计,尤其是RF方法。最后,为了评估火烟的瞬态健康影响,我们在短期曝光响应函数中应用了优化的高分辨率PM2.5暴露估计。估计烟雾集中PM2.5暴露的估计区域死亡率为183名(95%置信区间:0,432),占PM2.5污染的85%,其导致的95%的多次死亡率因火灾排放贡献。本申请表明了火灾烟雾对PNW的深刻健康影响以及高性能火灾烟雾预测和再分析系统的需求,以减少火灾地区烟雾危险的公共卫生风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号