In 1994, in [13], N. Papaghiuc introduced the notion of semi-slant submanifold in a Hermitian manifold which is a generalization of CR- and slant-submanifolds. In particular, he considered this submanifold in Kaehlerian manifolds, [13]. Then, in 2007, V. A. Khan and M. A. Khan considered this submanifold in a nearly Kaehler manifold and obtained interesting results, [11]. Recently, we considered semi-slant submanifolds in a locally conformal Kaehler manifold and gave a necessary and sufficient conditions for two distributions (holomorphic and slant) to be integrable. Moreover, we considered these submanifolds in a locally conformal Kaehler space form, [4]. In this paper, we define 2-kind warped product semi-slant submanifolds in a locally conformal Kaehler manifold and consider some properties of these submanifolds.
展开▼
机译:1994年,在[13]中,N.Papaghiuc在隐士歧管中引入了半倾斜子纤维的概念,这是Cr-和倾斜子纤维的概括。特别是,他认为在Kaehlerian歧管中的这个子多块,[13]。然后,在2007年,V. A. Khan和M. A. Khan在几乎喀喇叭歧管中考虑了这一子种属,并获得了有趣的结果[11]。最近,我们考虑了局部共形kaehler歧管中的半倾斜子多晶系数,并为两个分布(罗形和倾斜)提供了必要和充分的条件,以是可完整的。此外,我们认为在局部共形的Kaehler空间形式中认为这些子化合物[4]。在本文中,我们在局部共形的Kaehler歧管中定义了2种扭曲的产品半倾斜子散,并考虑这些子纤维的一些性质。
展开▼