首页> 外文OA文献 >Seismic facies classification and identification by competitive neural networks
【2h】

Seismic facies classification and identification by competitive neural networks

机译:竞争神经网络的地震相分类和识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present an approach based on competitive networks for the classification and identification of reservoir facies from seismic data. This approach can be adapted to perform either classification of the seismic facies based entirely on the characteristics of the seismic response, without requiring the use of any well information, or automatic identification and labeling of the facies where well information is available. The former is of prime use for oil prospecting in new regions, where few or no wells have been drilled, whereas the latter is most useful in development fields, where the information gained at the wells can be conveniently extended to inter-well regions. Cross-validation tests on synthetic and real seismic data demonstrated that the method can be an effective means of mapping the reservoir heterogeneity. For synthetic data, the output of the method showed considerable agreement with the actual geologic model used to generate the seismic data, while for the real data application, the predicted facies accurately matched those observed at the wells. Moreover, the resulting map corroborates our existing understanding of the reservoir and shows substantial similarity to the low frequency geologic model constructed by interpolating the well information, while adding significant detail and enhanced resolution to that model.
机译:我们提出了一种基于竞争网络的方法,用于从地震数据中分类和识别储层相。该方法可以适用于完全基于地震响应的特征来对地震相进行分类,而无需使用任何井信息,也可以自动识别和标记可获得井信息的相。前者主要用于新地区的石油勘探,那里很少或根本没有钻过油井,而后者在开发领域最为有用,在这些领域,从油井获得的信息可以方便地扩展到井间区域。对合成和真实地震数据的交叉验证测试表明,该方法可以作为绘制储层非均质性的有效手段。对于合成数据,该方法的输出与用于生成地震数据的实际地质模型显示出相当大的一致性,而对于实际数据应用,预测的相与井中观测到的相精确匹配。此外,生成的地图证实了我们对储层的现有理解,并显示出与通过插入井信息而构造的低频地质模型的实质相似性,同时为该模型增加了重要的细节并提高了分辨率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号