机译:在Rational递归序列$ x_ {n + 1} = big(a + sum _ {i = 0} ^ k alpha _ix_ {ni} big) big / sum _ {i = 0} ^ k beta_ix_ {ni} $
机译:关于差分方程x_ {n + 1} = frac {ax_ {n-(2k + 2)}} {-a + overset {2k + 2} { underset {i = 0} { prod} } x_ {ni}}
机译:关于有理递归序列x n + 1 = Ax n + Bx nk + fracbx n + gx nk Cx n + Dx nk x_ {n + 1} = Ax_ {n} + Bx_ {nk} + frac {beta x_ {n} +伽玛x_ {nk}} {Cx_ {n} + Dx_ {nk}}
机译:在差分等式x(n + 1)= ax(n)+ b sigma(k)(i = 0)x(n-i)/ c + d pi(k)(i = 0)x(n-i)
机译:有理差分方程x_ {n + 1} = ax_n ^ 2 /(cx_n + bx_ {n-1})的定性行为
机译:非线性差分等式x_(n + 1)=(1-x_n)/(a +σ_(i = 1)^k▒x_(n-i))的行为