首页> 外文OA文献 >Machine Learning Approaches to Bike-Sharing Systems: A Systematic Literature Review
【2h】

Machine Learning Approaches to Bike-Sharing Systems: A Systematic Literature Review

机译:自行车共享系统的机器学习方法:系统文献综述

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cities are moving towards new mobility strategies to tackle smart cities’ challenges such as carbon emission reduction, urban transport multimodality and mitigation of pandemic hazards, emphasising on the implementation of shared modes, such as bike-sharing systems. This paper poses a research question and introduces a corresponding systematic literature review, focusing on machine learning techniques’ contributions applied to bike-sharing systems to improve cities’ mobility. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) method was adopted to identify specific factors that influence bike-sharing systems, resulting in an analysis of 35 papers published between 2015 and 2019, creating an outline for future research. By means of systematic literature review and bibliometric analysis, machine learning algorithms were identified in two groups: classification and prediction.
机译:城市正在走向新的流动策略,以解决智能城市的挑战,如碳排放减排,城市交通多数和对大流行灾害的缓解,强调了自行车分享系统等共同模式的实施。本文提出了研究问题,并介绍了相应的系统文献综述,专注于机器学习技术应用于自行车共享系统以改善城市的流动性。采用了系统评价和荟萃分析的首选报告项目(PRISMA)方法来确定影响自行车分享系统的特定因素,导致2015年至2019年间发布的35篇论文分析,为未来的研究创造了一个概述。通过系统的文献综述和生物毛管测量分析,在两组中识别机器学习算法:分类和预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号