首页> 外文OA文献 >Scalable Triadic Analysis of Large-Scale Graphs: Multi-core vs. Multi-processor vs. Multi-threaded Shared Memory Architectures
【2h】

Scalable Triadic Analysis of Large-Scale Graphs: Multi-core vs. Multi-processor vs. Multi-threaded Shared Memory Architectures

机译:大规模图表的可扩展三合一分析:多核与多处理器与多线程共享内存架构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Triadic analysis encompasses a useful set of graph mining methods that arecentered on the concept of a triad, which is a subgraph of three nodes. Suchmethods are often applied in the social sciences as well as many other diversefields. Triadic methods commonly operate on a triad census that counts thenumber of triads of every possible edge configuration in a graph. Like othergraph algorithms, triadic census algorithms do not scale well when graphs reachtens of millions to billions of nodes. To enable the triadic analysis oflarge-scale graphs, we developed and optimized a triad census algorithm toefficiently execute on shared memory architectures. We then conductedperformance evaluations of the parallel triad census algorithm on threespecific systems: Cray XMT, HP Superdome, and AMD multi-core NUMA machine.These three systems have shared memory architectures but with markedlydifferent hardware capabilities to manage parallelism.
机译:三合一分析包括一组有用的图形挖掘方法,这些方法在三合会的概念上被调整,这是三个节点的子图。这种方法通常适用于社会科学以及许多其他不同的区别。三合治方法通常在TRIAD人口普斯上运行,该人口普查将在图表中的每种可能的Edge配置的三种三合一的ThiAd。与其他算法一样,当图表达到数十亿节点时,三合一人口普查算法不符号。要启用尺度图的三合一分析,我们开发并优化了在共享内存架构上的三合会人口普查算法。然后,我们在播建系统上进行并行三合会人口普查算法的评估:CRAY XMT,HP Superdome和AMD多核Numa Machine。这三个系统具有共享内存架构,但具有标记的硬件功能来管理并行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号