首页> 外文OA文献 >Deployment Strategy for Car-Sharing Depots by Clustering Urban Traffic Big Data Based on Affinity Propagation
【2h】

Deployment Strategy for Car-Sharing Depots by Clustering Urban Traffic Big Data Based on Affinity Propagation

机译:基于亲和传播的城市流量大数据集群分享仓库部署策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Car sharing is a type of car rental service, by which consumers rent cars for short periods of time, often charged by hours. The analysis of urban traffic big data is full of importance and significance to determine locations of depots for car-sharing system. Taxi OD (Origin-Destination) is a typical dataset of urban traffic. The volume of the data is extremely large so that traditional data processing applications do not work well. In this paper, an optimization method to determine the depot locations by clustering taxi OD points with AP (Affinity Propagation) clustering algorithm has been presented. By analyzing the characteristics of AP clustering algorithm, AP clustering has been optimized hierarchically based on administrative region segmentation. Considering sparse similarity matrix of taxi OD points, the input parameters of AP clustering have been adapted. In the case study, we choose the OD pairs information from Beijing’s taxi GPS trajectory data. The number and locations of depots are determined by clustering the OD points based on the optimization AP clustering. We describe experimental results of our approach and compare it with standard K-means method using quantitative and stationarity index. Experiments on the real datasets show that the proposed method for determining car-sharing depots has a superior performance.
机译:汽车共享是一种类型的汽车租赁服务,由消费者租赁汽车的时间很短,通常按小时计费的。城市交通大数据的分析是完全的重要性和意义,以确定仓库的汽车共享系统的位置。出租车OD(起点 - 终点)是城市交通的一个典型的数据集。在数据量非常大,使传统的数据处理应用程序不能正常工作。在本文中,一种优化方法,以确定与AP(亲和传播)聚类算法,已经呈现由聚类出租车OD点仓库的位置。通过分析AP聚类算法的特点,AP集群已经分层根据行政区域划分进行了优化。考虑的出租车OD点稀疏相似性矩阵,AP聚类的输入参数已被调整。在案例分析中,我们选择从北京的出租车的OD对信息GPS轨迹数据。数量和仓库的位置由聚类基于优化AP聚类OD点确定。我们描述了我们的方法的实验结果,并与使用定量和平稳性指标标准K-means法进行比较。在真实数据集实验表明,以确定共享汽车的车厂所提出的方法具有卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号