首页> 外文OA文献 >EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone
【2h】

EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone

机译:Android上的EEG录制和在线信号处理:智能手机上脑电脑接口的Multiapp框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Objective. Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. Approach. In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. Main Results. We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. Significance. We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms.
机译:客观的。我们的目的是开发和验证模块化信号处理和分类应用程序,可在现成的移动Android设备上启用在线脑电图(EEG)信号处理。软件应用程序Scala(Android上的信号处理和分类)支持与外部软件和硬件交换信息的标准化通信接口。方法。为了在智能手机上实现闭环大脑 - 计算机接口(BCI),我们使用了一个Multiapp框架,该框架集成了刺激呈现,数据采集,数据处理,分类和向用户提供反馈的应用程序。主要结果。我们已经实现了开源信号处理应用程序Scala。我们呈现时间测试结果支持足够的音频事件的时间精度。我们还验证了Scala,具有良好的听觉选择性关注范式,并报告所有参与者的机会水平分类结果。关于24通道EEG信号质量,评估结果确认典型的声音发作听觉诱发电位以及与正确和不正确的任务性能反馈之间的相关事件相关的电位。意义。我们提供了一个完全智能手机操作的模块化闭环BCI系统,可以与不同的EEG放大器组合,可以轻松实现其他范例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号