首页> 外文OA文献 >A Solution Quality Assessment Method for Swarm Intelligence Optimization Algorithms
【2h】

A Solution Quality Assessment Method for Swarm Intelligence Optimization Algorithms

机译:群体智能优化算法的解决方案质量评估方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nowadays, swarm intelligence optimization has become an important optimization tool and wildly used in many fields of application. In contrast to many successful applications, the theoretical foundation is rather weak. Therefore, there are still many problems to be solved. One problem is how to quantify the performance of algorithm in finite time, that is, how to evaluate the solution quality got by algorithm for practical problems. It greatly limits the application in practical problems. A solution quality assessment method for intelligent optimization is proposed in this paper. It is an experimental analysis method based on the analysis of search space and characteristic of algorithm itself. Instead of “value performance,” the “ordinal performance” is used as evaluation criteria in this method. The feasible solutions were clustered according to distance to divide solution samples into several parts. Then, solution space and “good enough” set can be decomposed based on the clustering results. Last, using relative knowledge of statistics, the evaluation result can be got. To validate the proposed method, some intelligent algorithms such as ant colony optimization (ACO), particle swarm optimization (PSO), and artificial fish swarm algorithm (AFS) were taken to solve traveling salesman problem. Computational results indicate the feasibility of proposed method.
机译:如今,群体智能优化已成为一个重要的优化工具,并且在许多应用领域使用。与许多成功的应用相比,理论基础相当弱。因此,仍有许多问题要解决。一个问题是如何量化有限时间的算法的性能,即如何通过算法进行实际问题来评估解决方案质量。它极大地限制了在实际问题中的应用。本文提出了一种智能优化解决方案质量评估方法。基于对算法本身的特性分析的实验分析方法。代替“价值性能”,“序数性能”用作此方法中的评估标准。可行的解决方案根据距离分组,将溶液样品分成几个部分。然后,可以根据聚类结果分解解决方案空间和“足够好”。最后,使用统计数据的相对知识,可以得到评估结果。为了验证所提出的方法,采取了一些智能算法,例如蚁群优化(ACO),粒子群优化(PSO)和人工鱼类群算法(AFS)来解决旅行推销员问题。计算结果表明所提出的方法的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号