首页> 外文OA文献 >Vibration Control of Blade Section Based on Sliding Mode PI Tracking Method and OPC Technology
【2h】

Vibration Control of Blade Section Based on Sliding Mode PI Tracking Method and OPC Technology

机译:基于滑模PI跟踪方法和OPC技术的刀片截面振动控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Vibration control of the blade section of a wind turbine is investigated based on the sliding mode proportional-integral (SM-PI) method, i.e., sliding mode control (SMC) based on a PI controller. The structure is modeled as a 2D pretwisted blade section integrated with calculation of structural damping, which is subjected to flap/lead-lag vibrations of instability. To facilitate the hardware implementation of the control algorithm, the SM-PI method is applied to realize tracking for limited displacements and velocities. The SM-PI algorithm is a novel SMC algorithm based on the nominal model. It combines the effectiveness of the sliding mode algorithm for disturbance control and the stability of PID control for practical engineering application. The SM-PI design and stability analysis are discussed, with superiority and robustness and convergency control demonstrated. An experimental platform based on human-computer interaction using OPC technology is implemented, with position tracking for displacement and control input signal illustrated. The platform verifies the feasibility and effectiveness of the SM-PI algorithm in solving practical engineering problems, with online tuning of PI parameters realized by applying OPC technology.
机译:基于滑动模式比例积分(SM-PI)方法,即基于PI控制器的滑模控制(SMC),研究了风力涡轮机的叶片部分的振动控制。该结构被建模为与结构阻尼的计算集成的2D预选刀片部分,其经受不稳定性的襟翼/引导滞后振动。为了便于控制算法的硬件实现,应用SM-PI方法来实现有限的位移和速度的跟踪。 SM-PI算法是一种基于标称模型的新型SMC算法。它结合了扰动控制的滑模算法的有效性以及实际工程应用PID控制的稳定性。讨论了SM-PI设计和稳定性分析,具有优越性和鲁棒性和收敛控制。实现了基于使用OPC技术的人机交互的实验平台,具有用于位移和控制输入信号的位置跟踪。该平台验证了SM-PI算法在解决实际工程问题方面的可行性和有效性,通过应用OPC技术实现了PI参数的在线调整。

著录项

  • 作者

    Tingrui Liu;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号