首页> 外文OA文献 >NC Machine Tools Fault Diagnosis Based on Kernel PCA andk-Nearest Neighbor Using Vibration Signals
【2h】

NC Machine Tools Fault Diagnosis Based on Kernel PCA andk-Nearest Neighbor Using Vibration Signals

机译:NC机床基于内核PCA ANDK最近邻居使用振动信号的故障诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper focuses on the fault diagnosis for NC machine tools and puts forward a fault diagnosis method based on kernel principal component analysis (KPCA) and k-nearest neighbor (kNN). A data-dependent KPCA based on covariance matrix of sample data is designed to overcome the subjectivity in parameter selection of kernel function and is used to transform original high-dimensional data into low-dimensional manifold feature space with the intrinsic dimensionality. The kNN method is modified to adapt the fault diagnosis of tools that can determine thresholds of multifault classes and is applied to detect potential faults. An experimental analysis in NC milling machine tools is developed; the testing result shows that the proposed method is outperforming compared to the other two methods in tool fault diagnosis.
机译:本文重点介绍了NC机床的故障诊断,并提出了基于内核主成分分析(KPCA)和K最近邻(KNN)的故障诊断方法。基于调用数据数据的数据相关的KPCA旨在克服内核功能参数选择中的主观性,并且用于将原始高维数据转换为具有内在维度的低维歧管特征空间。修改了KNN方法,以调整可以确定多rault类阈值的工具的故障诊断,并应用于检测潜在故障。开发了NC铣床工具的实验分析;测试结果表明,与刀具故障诊断中的其他两种方法相比,所提出的方法表明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号