首页> 外文OA文献 >Spatiotemporally random and diverse grid cell spike patterns contribute to the transformation of grid cell to place cell in a neural network model
【2h】

Spatiotemporally random and diverse grid cell spike patterns contribute to the transformation of grid cell to place cell in a neural network model

机译:Spatiotemporally随机和不同的网格单元尖峰图案有助于将电池的转化转换为神经网络模型中的细胞

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The medial entorhinal cortex and the hippocampus are brain regions specialized in spatial information processing. While an animal navigates around an environment, grid cells in the medial entorhinal cortex spike at multiple discrete locations, forming hexagonal grid patterns, and each grid cell is spatiotemporally dynamic with a different grid size, spacing, and orientation. In contrast, place cells in the hippocampus spike when an animal is at one or more specific locations, called a "place field". While an animal traverses through a place field, the place cell's spike phases relative to the hippocampal theta-frequency oscillation advance in phase, known as the "spike phase precession" phenomenon and each spike encodes the specific location within the place field. Interestingly, the medial entorhinal cortical grid cells and the hippocampal place cells are only one excitatory synapse apart. However, how the spatiotemporally dynamic multi-peaked grid cell activities are transformed into hippocampal place cell activities with spike phase precession phenomenon is yet unknown. To address this question, we construct an anatomically and physiologically realistic neural network model comprised of 10,000 grid cell models, each with a spatiotemporally dynamic grid patterns and a place cell model connected by excitatory synapses. Using this neural network model, we show that grid cells' spike activities with spatiotemporally random and diverse grid orientation, spacing, and phases as inputs to place cell are able to generate a place field with spike phase precession. These results indicate that spatiotemporally random and diverse grid cell spike activities are essential for the formation of place cell activity observed in vivo.
机译:内侧梭形皮质和海马是专门用于空间信息处理的脑区。虽然动物围绕环境导航,但是在多个离散位置处的内侧梭形皮质峰值的网格细胞,形成六边形网格图案,并且每个网格电池具有不同的网格尺寸,间距和方向。相反,当动物处于一个或多个特定位置时,将细胞放置在海马峰值中,称为“地方场”。虽然动物穿过一个地方场,但是将电池的峰值相对于相对于海马θ频率振荡的阶段相位进展,称为“尖峰相位进样”现象,并且每个尖峰对地方场内的特定位置进行编码。有趣的是,内侧梭菌皮质栅格细胞和海马局部细胞仅分开一个兴奋性突触。然而,使用尖峰阶段预测现象尚未知,现时动态的多峰值网格细胞活性转化为海马局部电池活动。为了解决这个问题,我们构建一个由10,000个网格单元模型组成的解剖学和生理学现实的神经网络模型,每个网格电池模型包括时空动态的网格图案和由兴奋性突触连接的地方电池模型。使用这种神经网络模型,我们表明网格单元的峰值活动与时空随机和不同的网格取向,间距和阶段作为输入到放置电池的输入能够产生具有尖峰相位的地方场。这些结果表明,即天地性随机和多样化的网格细胞尖峰活动对于在体内观察到的地方细胞活性的形成至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号