首页> 外文OA文献 >Simulation-based optimisation of a linear Fresnel collector mirror field and receiver for optical, thermal and economic performance
【2h】

Simulation-based optimisation of a linear Fresnel collector mirror field and receiver for optical, thermal and economic performance

机译:基于仿真的光纤收集器镜面和接收器的光,热和经济性能的优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Increasing the efficiency of concentrating solar power (CSP) technologies by means of optimisation tools is one of the current topics of solar thermal researchers. Of these technologies, Linear Fresnel collectors (LFCs) are the least developed. Therefore, there is plenty of room for the optimisation of this technology. One of the goals of this paper, in addition to the optimisation of an LFC plant, is introducing an applicable optimisation procedure that can be applied for any type of CSP plant. This paper focuses on harvesting maximum solar energy (maximising plant optical efficiency), as well as minimising plant thermal heat loss (maximising plant thermal efficiency), and plant cost (the economic optimisation of the plant), which leads to the generation of cheaper solar electricity from an LFC plant with a fixed power plant cycle (The performance optimisation of this study is based on the plant performance throughout an imaginary summer day). A multi-tube cavity receiver is considered in this study since there is plenty of room for its optimization. For the receiver, optimal cavity shape, tube bundle arrangement, tube numbers, cavity mounting height and insulation thickness are considered, while for the mirror field, the number of mirrors, mirror width, mirror gaps and mirror focal length are considered to achieve the optimisation goals. A multi-stage optimisation process is followed. Firstly, optical (using SolTrace), thermal (using a view area approach) and economic performance are combined in a multi-objective genetic algorithm as incorporated in ANSYS DesignXplorer (DX). This leads to an optimal LFC with a variable focal length for each mirror. After determining a fixed optimal focal length for all the mirrors, a Computational Fluid Dynamics (CFD) approach is used to optimise the thermal insulation of the cavity receiver for minimal heat loss and minimal insulation material. The process is automated through the use of ANSYS Workbench and Excel (coding with Visual Basic for Application (VBA) and LK Scripting in SolTrace). The view area approach provides an inexpensive way of calculating radiation heat loss from the receiver that is shown in the subsequent CFD analysis to be dominating the heat transfer loss mechanisms. The optimised receiver is evaluated at different LFC plant tube temperatures to assess its performance.
机译:如果增加的优化工具进行聚光太阳能发电(CSP)技术的效率是太阳能光热研究的当前课题之一。这些技术的,线性菲涅耳集热器(低森林覆盖率)是最不发达国家。因此,有足够的空间用于该技术的优化。之一的本文的目标,除了一个LFC植物的优化,正在引入可应用于任何类型的CSP植物的适用优化过程。本文重点研究收获最大太阳能(最大化植物光学效率),以及最小化对便宜太阳能的发电设备的热的热损失(最大化植物热效率),和植物成本(该植物的经济优化),这导致从具有固定发电厂循环的LFC厂用电(本研究的性能优化是基于整个假想夏天的设备性能)。因为有足够的空间,其优化的多管式腔接收机在这项研究中考虑。对于接收器,最佳的空腔形状,管束布置,管号码,腔的安装高度和绝缘厚度被考虑,而对于反射镜场,反射镜,反射镜的宽度,镜差距和镜焦距的数量被认为是达到最优化目标。多级优化过程之后。首先,光(使用SolTrace),热(使用视图区域的方法)和经济性能被组合在多目标遗传算法作为ANSYS DesignXplorer(DX)并入。这导致最佳的LFC具有用于每个反射镜的可变焦距。确定用于所有反射镜的固定最佳焦距后,计算流体动力学(CFD)方法被用于优化最小的热量损失和最小的绝缘材料空腔接收器的热绝缘。该过程是通过使用ANSYS工作台和Excel(用Visual Basic应用程序(VBA)和LK脚本在SolTrace编码)的自动化。视图区域的方法提供计算从被示出在随后的CFD分析被支配传热损耗机制的接收机辐射热损失的一种廉价的方式。优化的接收器在不同的植物LFC管温度进行评估,以评估其性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号