首页> 外文OA文献 >A Genetic Algorithm for Mixed Integer Nonlinear Programming Problems Using Separate Constraint Approximations
【2h】

A Genetic Algorithm for Mixed Integer Nonlinear Programming Problems Using Separate Constraint Approximations

机译:基于分离约束近似的混合整数非线性规划问题的遗传算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper describes a new approach for reducing the number of the fitness and constraint function evaluations required by a genetic algorithm (GA) for optimization problems with mixed continuous and discrete design variables. The proposed additions to the GA make the search more effective and rapidly improve the fitness value from generation to generation.The additions involve memory as a function of both discrete and continuous design variables, and multivariate approximation of the individual functions' responses in terms of several continuous design variables. The approximation is demonstrated for the minimum weight design of a composite cylindrical shell with grid stiffeners.
机译:本文介绍了一种新方法,用于减少遗传算法(GA)求解连续和离散混合设计变量的优化问题所需的适应度和约束函数评估数量。 GA的拟议增加功能使搜索更有效并一代又一代地提高了适应度值。这些增加功能涉及作为离散和连续设计变量的函数的记忆,以及各个函数响应在多个方面的多元近似连续的设计变量。该近似值表明了具有格栅加劲肋的复合圆柱壳的最小重量设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号