首页> 外文OA文献 >Discovery of Novel DPP-IV Inhibitors as Potential Candidates for the Treatment of Type 2 Diabetes mellitus Predicted by 3D QSAR Pharmacophore Models, Molecular Docking and de novo Evolution
【2h】

Discovery of Novel DPP-IV Inhibitors as Potential Candidates for the Treatment of Type 2 Diabetes mellitus Predicted by 3D QSAR Pharmacophore Models, Molecular Docking and de novo Evolution

机译:发现新型DPP-IV抑制剂作为治疗2型糖尿病的潜在候选者,通过3D QSAR Pharmacore模型预测,分子对接和诺夫演化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dipeptidyl peptidase-IV (DPP-IV) rapidly breaks down the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). Thus, the use of DPP-IV inhibitors to retard the degradation of endogenous GLP-1 is a possible mode of therapy correcting the defect in incretin-related physiology. The aim of this study is to find a new small molecule and explore the inhibition activity to the DPP-IV enzyme using a computer aided simulation. In this study, the predicted compounds were suggested as potent anti-diabetic candidates. Chosen structures were applied following computational strategies: The generation of the three-dimensional quantitative structure-activity relationship (3D QSAR) pharmacophore models, virtual screening, molecular docking, and de novo Evolution. The method also validated by performing re-docking and cross-docking studies of seven protein systems for which crystal structures were available for all bound ligands. The molecular docking experiments of predicted compounds within the binding pocket of DPP-IV were conducted. By using 25 training set inhibitors, ten pharmacophore models were generated, among which hypo1 was the best pharmacophore model with the best predictive power on account of the highest cost difference (352.03), the lowest root mean squared deviation (RMSD) (2.234), and the best correlation coefficient (0.925). Hypo1 pharmacophore model was used for virtual screening. A total of 161 compounds including 120 from the databases, 25 from the training set, 16 from the test set were selected for molecular docking. Analyzing the amino acid residues of the ligand-receptor interaction, it can be concluded that Arg125, Glu205, Glu206, Tyr547, Tyr662, and Tyr666 are the main amino acid residues. The last step in this study was de novo Evolution that generated 11 novel compounds. The derivative dpp4_45_Evo_1 by all scores CDOCKER_ENERGY (CDOCKER, -41.79), LigScore1 (LScore1, 5.86), LigScore2 (LScore2, 7.07), PLP1 (-112.01), PLP2 (-105.77), PMF (-162.5)—have exceeded the control compound. Thus the most active compound among 11 derivative compounds is dpp4_45_Evo_1. Additionally, for derivatives dpp4_42_Evo_1, dpp4_43_Evo2, dpp4_46_Evo_4, and dpp4_47_Evo_2, significant upward shifts were recorded. The consensus score for the derivatives of dpp4_45_Evo_1 from 1 to 6, dpp4_43_Evo2 from 4 to 6, dpp4_46_Evo_4 from 1 to 6, and dpp4_47_Evo_2 from 0 to 6 were increased. Generally, predicted candidates can act as potent occurring DPP-IV inhibitors given their ability to bind directly to the active sites of DPP-IV. Our result described that the 6 re-docked and 27 cross-docked protein-ligand complexes showed RMSD values of less than 2 Å. Further investigation will result in the development of novel and potential antidiabetic drugs.
机译:二肽基肽酶-4V(DPP-IV)迅速破坏增量素激素胰高血糖素样肽-1(GLP-1)和葡萄糖依赖性胰岛素肽(GIP)。因此,使用DPP-IV抑制剂延迟内源性GLP-1的降解是纠正相关生理学中的缺陷的可能疗法。本研究的目的是使用计算机辅助模拟找到一种新的小分子并探讨DPP-IV酶的抑制活性。在这项研究中,预测化合物被提出为有效的抗糖尿病候选者。在计算策略之后应用了所选择的结构:产生三维定量结构 - 活动关系(3D QSAR)药长模型,虚拟筛选,分子对接和DE Novo演化。该方法还通过执行七种蛋白质系统的再对接和交叉停靠研究来验证,其晶体结构可用于所有结合的配体。进行DPP-IV的结合口腔内预测化合物的分子对接实验。通过使用25次训练诱导抑制剂,产生了十种药物模型,其中Hypo1是最佳的药镜模型,因为最高成本差异(352.03),最低的根均匀平方偏差(RMSD)(2.234),和最佳相关系数(0.925)。 HEPO1 Pharmacophore模型用于虚拟筛选。共有161种化合物,包括来自数据库的120,从训练组中的25个,从测试组中选择16个,用于分子对接。分析配体受体相互作用的氨基酸残基,可以得出结论,arg125,Glu205,Glu206,Tyr547,Tyr662和Tyr666是主要的氨基酸残基。本研究的最后一步是产生11种新化合物的Novo演化。所有分数CDOCKER_ENERGY(CDOCKER,-41.79),LIGSCORE1(LSCORE1,5.86),LIGSCORE2(LSCORE2,7.07),PLP1(-112.01),PLP2(-105.77),PMF(-162.5),超出控制化合物。因此,11种衍生化合物中最活性化合物是DPP4_45_EVO_1。此外,对于衍生物DPP4_42_EVO_1,DPP4_43_EVO2,DPP4_46_EVO_4和DPP4_47_EVO_2,记录了大量向上班次。 DPP4_45_evo_1的衍生物的共识分数从1到6,dpp4_43_evo2从4到6,从1到6的dpp4_46_evo_4和0到6的dpp4_47_evo_2增加到6。通常,预测的候选者可以充当有效的发生DPP-IV抑制剂,鉴于它们直接与DPP-IV的活性位点结合的能力。我们的结果描述了6个重新停靠的和27个交叉对接的蛋白质 - 配体复合物,显示出少于2的RMSD值。进一步调查将导致新颖和潜在的抗糖尿病药物的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号