首页> 外文OA文献 >Intelligent Reflecting Surface-Assisted Secure Multi-Input Single-Output Cognitive Radio Transmission
【2h】

Intelligent Reflecting Surface-Assisted Secure Multi-Input Single-Output Cognitive Radio Transmission

机译:智能反射表面辅助安全多输入单输出认知无线电传输

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Intelligent reflecting surface (IRS) is a very promising technology for the development of beyond 5G or 6G wireless communications due to its low complexity, intelligence, and green energy-efficient properties. In this paper, we combined IRS with physical layer security (PLS) to solve the security issue of cognitive radio (CR) networks. Specifically, an IRS-assisted multi-input single-output (MISO) CR wiretap channel was studied. To maximize the secrecy rate of secondary users subject to a total power constraint (TPC) for the transmitter and interference power constraint (IPC) for a single antenna primary receiver (PR) in this channel, an alternating optimization (AO) algorithm is proposed to jointly optimize the transmit covariance R at transmitter and phase shift coefficient Q at IRS by fixing the other as constant. When Q is fixed, R is globally optimized by equivalently transforming the quasi-convex sub-problem to convex one. When R is fixed, bisection search in combination with minorization–maximization (MM) algorithm was applied to optimize Q from the non-convex fractional programming sub-problem. During each iteration of MM, another bisection search algorithm is proposed, which is able to find the global optimal closed-form solution of Q given the initial point from the previous iteration of MM. The convergence of the proposed algorithm is analyzed, and an extension of applying this algorithm to multi-antenna PR case is discussed. Simulations have shown that our proposed IRS-assisted design greatly enhances the secondary user’s secrecy rate compared to existing methods without IRS. Even when IPC is active, the secrecy rate returned by our algorithm increases with transmit power as if there is no IPC at all.
机译:由于其低复杂性,智能和绿色节能性能,智能反射表面(IRS)是一种非常有前途的技术,可实现超过5G或6G无线通信。在本文中,我们将IRS与物理层安全(PLS)组合以解决认知无线电(CR)网络的安全问题。具体地,研究了IRS辅助的多输入单输出(MISO)CR丝网通道。为了在该信道中为单个天线主接收器(PR)的发送器和干扰功率约束(IPC)的总功率约束(TPC)最大化辅助用户的保密率,提出了交替优化(AO)算法通过将另一个固定为常数,在IRS上共同优化发送器和相移系数Q的发射协方差R.当Q被固定时,通过等效地将准凸子问题等效地转换为凸面来全局优化。当R是固定的时,将与较小化 - 最大化(mm)算法结合的分配搜索来从非凸分数编程子问题中优化Q.在每个MM的每个迭代期间,提出了另一种分配搜索算法,其能够在初始迭代的初始点找到Q的全局最佳闭合形式解。分析了所提出的算法的收敛,并讨论将该算法应用于多天线Pr案例的扩展。模拟表明,与没有IR的现有方法相比,我们提出的IRS辅助设计极大地提高了次要用户的保密率。即使IPC处于活动状态,我们的算法返回的保密率也随着传输功率而增加,好像根本没有IPC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号