首页> 外文OA文献 >Deep Learning Based Recommender System
【2h】

Deep Learning Based Recommender System

机译:基于深度学习的推荐系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the ever-growing volume, complexity and dynamicity of onlineinformation, recommender system has been an effective key solution to overcomesuch information overload. In recent years, deep learning's revolutionaryadvances in speech recognition, image analysis and natural language processinghave gained significant attention. Meanwhile, recent studies also demonstrateits effectiveness in coping with information retrieval and recommendationtasks. Applying deep learning techniques into recommender system has beengaining momentum due to its state-of-the-art performances and high-qualityrecommendations. In contrast to traditional recommendation models, deeplearning provides a better understanding of user's demands, item'scharacteristics and historical interactions between them. This article aims to provide a comprehensive review of recent researchefforts on deep learning based recommender systems towards fosteringinnovations of recommender system research. A taxonomy of deep learning basedrecommendation models is presented and used to categorize the surveyedarticles. Open problems are identified based on the analytics of the reviewedworks and potential solutions discussed.
机译:随着不断增长的体积,复杂性和在线信息的动态性,推荐系统一直是覆盖信息过载的有效关键解决方案。近年来,深入学习的语音识别的革命性,图像分析和自然语言处理持续重视。与此同时,最近的研究还展示了应对信息检索和推荐的有效性。将深度学习技术应用于推荐系统,由于其最先进的表演和高质量的咨询而导致的势头。与传统推荐模式相比,Deeplearning提供了更好地了解用户的需求,项目的特征和它们之间的历史相互作用。本文旨在对基于深度学习的推荐系统进行全面审查,朝向培养建议系统研究的培养。介绍了基于深度学习的分类模型,并用于对勘察进行分类。根据讨论的审核和潜在解决方案的分析来确定打开问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号