首页> 外文OA文献 >Load Distribution of Evolutionary Algorithm for Complex-Process Optimization Based on Differential Evolutionary Strategy in Hot Rolling Process
【2h】

Load Distribution of Evolutionary Algorithm for Complex-Process Optimization Based on Differential Evolutionary Strategy in Hot Rolling Process

机译:基于差动进化策略在热轧过程中复合过程优化进化算法的负载分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Based on the hot rolling process, a load distribution optimization model is established, which includes rolling force model, thickness distribution model, and temperature model. The rolling force ratio distribution and good strip shape are integrated as two indicators of objective function in the optimization model. Then, the evolutionary algorithm for complex-process optimization (EACOP) is introduced in the following optimization algorithm. Due to its flexible framework structure on search mechanism, the EACOP is improved within differential evolutionary strategy, for better coverage speed and search efficiency. At last, the experimental and simulation result shows that evolutionary algorithm for complex-process optimization based on differential evolutionary strategy (DEACOP) is the organism including local search and global search. The comparison with experience distribution and EACOP shows that DEACOP is able to use fewer adjustable parameters and more efficient population differential strategy during solution searching; meanwhile it still can get feasible mathematical solution for actual load distribution problems in hot rolling process.
机译:基于热轧工艺,建立了负载分布优化模型,包括滚动力模型,厚度分布模型和温度模型。轧制力比分布和良好的条带形状被整合为优化模型中的两个目标函数指标。然后,在以下优化算法中引入了复杂过程优化(EACOP)的进化算法。由于其灵活的搜索机制框架结构,EACOP在差分进化策略中得到了改善,以便更好地覆盖速度和搜索效率。最后,实验和仿真结果表明,基于差分进化策略(DEACOP)的复杂过程优化的进化算法是包括本地搜索和全球搜索的生物体。与经验分配和EACOP的比较表明,在解决方案搜索期间,DEACOP能够在解决方案中使用更少的可调参数和更高效的人口差动策略;同时它仍然可以获得热轧过程中实际负载分布问题的可行数学解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号