首页> 外文OA文献 >Phase-coherence classification: A new wavelet-based method to separate local field potentials into local (in)coherent and volume-conducted components
【2h】

Phase-coherence classification: A new wavelet-based method to separate local field potentials into local (in)coherent and volume-conducted components

机译:相位相干分类:基于小波的方法将本地现场电位分离到本地(IN)相干和批量传导的组件中

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background: Local field potentials (LFP) reflect the integrated electrophysiological activity of large neuron populations and may thus reflect the dynamics of spatially and functionally different networks. New method: We introduce the wavelet-based phase-coherence classification (PCC), which separates LFP into volume-conducted, local incoherent and local coherent components. It allows to compute power spectral densities for each component associated with local or remote electrophysiological activity. Results: We use synthetic time series to estimate optimal parameters for the application to LFP from within the subthalamic nucleus of eight Parkinson patients. With PCC we identify multiple local tremor clusters and quantify the relative power of local and volume-conducted components. We analyze the electrophys- iological response to an apomorphine injection during rest and hold. Here we show medication-induced significant decrease of incoherent activity in the low beta band and increase of coherent activity in the high beta band. On medication significant movement-induced changes occur in the high beta band of the local coherent signal. It increases during isometric hold tasks and decreases during phasic wrist movement. Comparison with existing methods: The power spectra of local PCC components is compared to bipolar recordings. In contrast to bipolar recordings PCC can distinguish local incoherent and coherent signals. We further compare our results with classification based on the imaginary part of coherency and the weighted phase lag index. Conclusions: The low and high beta band are more susceptible to medication- and movement-related changes reflected by incoherent and local coherent activity, respectively. PCC components may thus reflect functionally different networks.
机译:背景:局部场势(LFP)反映了大神经元群​​的综合电生理活性,因此可以反映空间和功能不同网络的动态。新方法:我们介绍了基于小波的相干分类(PCC),其将LFP分离成体积传导,局部非相干和局部相干部件。它允许计算与局部或远程电生理活动相关的每个组件的功率谱密度。结果:我们使用合成时间序列来估计八个帕金森患者的亚饱和核内的应用程序的最佳参数。使用PCC,我们识别多个本地震颤集群,并量化本地和批量传导组件的相对功率。我们分析了在休息和持有期间对阿托啡胺注射的电泳反应。在这里,我们展示了药物诱导的低β带中的阴离子活性的显着降低以及高β带中的相干活性的增加。在局部相干信号的高β带中发生显着的运动诱导的变化。在等距保持任务期间增加,在相位的手腕运动期间减少。与现有方法的比较:将本地PCC组件的功率谱与双极录音进行比较。与双极记录相比,PCC可以区分局部非相干和相干信号。我们进一步将我们的结果与基于一致性的一部分和加权阶段滞后指数进行了分类。结论:低β和高β和高β频段更容易受到不连贯和局部相干活动反映的药物和运动相关的变化。因此,PCC组件可以反映功能不同的网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号