首页> 外文OA文献 >Different Strategies for the Preparation of Galactose-Functionalized Thermo-Responsive Nanogels with Potential as Smart Drug Delivery Systems
【2h】

Different Strategies for the Preparation of Galactose-Functionalized Thermo-Responsive Nanogels with Potential as Smart Drug Delivery Systems

机译:具有潜在智能药物递送系统的半乳糖官能化热响应纳米凝电池的不同策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Different synthetic strategies were tested for the incorporation of galactose molecules on thermoresponsive nanogels owing to their affinity for receptors expressed in cancer cells. Three families of galactose-functionalized poly(N-vinylcaprolactam) nanogels were prepared with the aim to control the introduction of galactose-moieties into the core, the core-shell interface and the shell. First and second of the above mentioned, were prepared via surfactant free emulsion polymerization (SFEP) by a free-radical mechanism and the third one, via SFEP/reversible addition-fragmentation chain transfer (RAFT) polymerization. Synthetic recipes for the SFEP/free radical method included besides N-vinylcaprolactam (NVCL), a shell forming poly(ethylene glycol) methyl ether methacrylate (PEGMA), while the galactose (GAL) moiety was introduced via 6-O-acryloyl-1,2,:3,4-bis-O-(1-methyl-ethylidene)-α-D-galactopiranose (6-ABG, protected GAL-monomer): nanogels I, or 2-lactobionamidoethyl methacrylate (LAMA, GAL-monomer): nanogels II. For the SFEP/RAFT methodology poly(2-lactobionamidoethyl methacrylate) as GAL macro-chain transfer agent (PLAMA macro-CTA) was first prepared and on a following stage, the macro-CTA was copolymerized with PEGMA and NVCL, nanogels III. The crosslinker ethylene glycol dimethacrylate (EGDMA) was added in both methodologies for the polymer network construction. Nanogel’s sizes obtained resulted between 90 and 370 nm. With higher content of PLAMA macro-CTA or GAL monomer in nanogels, a higher the phase-transition temperature (TVPT) was observed with values ranging from 28 to 46 °C. The ρ-parameter, calculated by the ratio of gyration and hydrodynamic radii from static (SLS) and dynamic (DLS) light scattering measurements, and transmission electron microscopy (TEM) micrographs suggest that core-shell nanogels of flexible chains were obtained; in either spherical (nanogels II and III) or hyperbranched (nanogels I) form.
机译:测试不同的合成策略,以掺入热致料纳米孔上的半乳糖分子由于它们对癌细胞中表达的受体的亲和力而进行。制备三个半乳糖官能化聚(N-乙烯基己内酰胺)纳米凝胶的旨在控制将半乳糖部分引入核心,核心壳界面和壳体。通过自由基机制和第三,通过SFEP /可逆添加 - 碎片链转移(RAFT)聚合,通过表面活性剂自由乳液聚合(SFEP)制备第一和第二上述第二个。除了N-乙烯基己内酰胺(NVCL)之外,SFEP /自由基方法的合成配方,壳体形成聚(乙二醇)甲基醚甲基丙烯酸甲酯(PEGMA),而通过6-O-丙烯酰-1引入半乳糖(GAL)部分,2,:3,4-双-O-(1-甲基 - 乙基)-α-D-半乳酰吡喃(6-ABG,保护GAL单体):纳米凝胶I,或2-丙基苏米甲基甲基丙烯酸甲酯(喇嘛,GAL-单体):纳米孔II。对于首先制备GAL宏链转移剂(PLAMA MACRO-CTA)的SFEP / RAFT方法,首先制备和在下一阶段,将宏CTA与PEGMA和NVCL,NaNogels III共聚。在聚合物网络构建的两种方法中加入交联剂乙二醇二甲基丙烯酸酯(EGDMA)。获得的纳尼尔尺寸导致90至370nm。在纳米凝胶中的PlaMA宏CTA或GAL单体含量较高,观察到较高的相转变温度(TVPT),其值范围为28至46℃。 ρ-参数通过静态(SLS)和动态(DLS)光散射测量的循环和流体动力半径的比率计算,透射电子显微镜(TEM)显微照片表明,获得了柔性链的核心壳纳米凝胶;在球形(Nanogels II和III)或超支化(Nanogels I)形式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号