首页> 外文OA文献 >Ontology-based approach for identifying the credibility domain in social Big Data
【2h】

Ontology-based approach for identifying the credibility domain in social Big Data

机译:基于本体论识别社会大数据中的可信度域的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A challenge of managing and extracting useful knowledge from social mediadata sources has attracted much attention from academic and industry. Toaddress this challenge, semantic analysis of textual data is focused in thispaper. We propose an ontology-based approach to extract semantics of textualdata and define the domain of data. In other words, we semantically analyse thesocial data at two levels i.e. the entity level and the domain level. We havechosen Twitter as a social channel challenge for a purpose of concept proof.Domain knowledge is captured in ontologies which are then used to enrich thesemantics of tweets provided with specific semantic conceptual representationof entities that appear in the tweets. Case studies are used to demonstratethis approach. We experiment and evaluate our proposed approach with a publicdataset collected from Twitter and from the politics domain. The ontology-basedapproach leverages entity extraction and concept mappings in terms of quantityand accuracy of concept identification.
机译:管理和提取社会媒体资源的有用知识的挑战吸引了学术界的许多关注。 toaddress这一挑战,对文本数据的语义分析专注于此纸张。我们提出了一种基于本体的方法来提取文本数据的语义,并定义数据域。换句话说,我们在三个级别的三个级别进行了语义分析了这种类型的数据。实体级别和域级别。我们为Twitter作为社会渠道挑战,以概念证明.Diply.Domain知识在本体中被捕获,然后在本体中捕获,用于丰富具有特定语义概念代表的推文的Tweets,这些特定的语义概念表示。案例研究用于规范方法。我们尝试并评估我们的建议方法,并通过从Twitter和政治领域收集的PublicDataset。在概念识别的数量和概念准确性方面,本体基于概念映射利用实体提取和概念映射。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号