首页> 外文OA文献 >Modelling the Publishing Process of Big Location Data Using Deep Learning Prediction Methods
【2h】

Modelling the Publishing Process of Big Location Data Using Deep Learning Prediction Methods

机译:使用深度学习预测方法建模大型位置数据的出版过程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Centralized publishing of big location data can provide accurate and timely information to assist in traffic management and for facilitating people to decide travel time and route, mitigate traffic congestion, and reduce unnecessary waste. However, the spatio-temporal correlation, non-linearity, randomness, and uncertainty of big location data make it impossible to decide an optimal data publishing instance through traditional methods. This paper, accordingly, proposes a publishing interval predicting method for centralized publication of big location data based on the promising paradigm of deep learning. First, the adaptive adjusted sampling method is designed to address the challenge of finding a reasonable release time via a prediction mechanism. Second, the Maximal Overlap Discrete Wavelet Transform (MODWT) is introduced for the decomposition of time series in order to separate different features of big location data. Finally, different deep learning models are selected to construct the entire framework according to various time-domain features. Experimental analysis suggests that the proposed prediction scheme is not only feasible, but also improves the prediction accuracy in contrast to the traditional deep learning mechanisms.
机译:集中出版大型位置数据可以提供准确和及时的信息,以协助交通管理,并促进人们决定旅行时间和路线,减少交通拥堵,减少不必要的浪费。然而,大型位置数据的时空相关,非线性,随机性和不确定性使得不可能通过传统方法来决定最佳数据发布实例。因此,本文提出了一种基于深度学习的有前途范式的大型位置数据集中出版的发布间隔预测方法。首先,自适应调整的采样方法旨在解决通过预测机制找到合理释放时间的挑战。其次,引入了最大重叠离散小波变换(MODWT)以分解时间序列,以便分离大位置数据的不同特征。最后,选择不同的深度学习模型以根据各种时域特征构建整个框架。实验分析表明,所提出的预测方案不仅是可行的,而且还提高了与传统的深度学习机制相比的预测准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号