首页> 外文OA文献 >A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images
【2h】

A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images

机译:基于B样条型医学图像的并行非重物注册算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD) plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD) is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs) to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG) optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU).
机译:基于B样条曲线自由形式变形(FFD)的非抗原注册算法起到了关键作用,由于良好的灵活性和鲁棒性,广泛应用于医学图像处理。然而,它需要大量的计算时间来获得更准确的注册结果,特别是对于大量的医学图像数据。为了解决此问题,本文提出了一种基于B样条线的并行非重字体注册算法。首先,对数方向差(LSD)被认为是B样条配准算法中的相似度量,以提高登记精度。之后,我们创建了一个并行计算策略和查找表(LUT),以降低B样条登记算法的复杂性。结果,对于B样条配准算法,有效地减少了包括B样条插值,LSD计算和LSD的分析梯度计算的三个耗时步骤的计算时间,用于B样条配准算法采用非线性缀合物梯度(NCG)优化方法。对大量医学图像的登记质量和执行效率的实验结果表明,我们的算法在最佳变形字段与地面真理之间的差异方面实现了更好的登记准确性,并在单线CPU实现中的17倍的加速度由于图形处理单元(GPU)的强大并行计算能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号