首页> 外文OA文献 >Precipitation Data Assimilation System Based on a Neural Network and Case-Based Reasoning System
【2h】

Precipitation Data Assimilation System Based on a Neural Network and Case-Based Reasoning System

机译:基于神经网络和基于案例推理系统的降水数据同化系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There are several methods to forecast precipitation, but none of them is accurate enough since predicting precipitation is very complicated and influenced by many factors. Data assimilation systems (DAS) aim to increase the prediction result by processing data from different sources in a general way, such as a weighted average, but have not been used for precipitation prediction until now. A DAS that makes use of mathematical tools is complex and hard to carry out. In our paper, machine learning techniques are introduced into a precipitation data assimilation system. After summarizing the theoretical construction of this method, we take some practical weather forecasting experiments and the results show that the new system is effective and promising.
机译:有几种方法可以预测降水,但它们都没有足够的准确,因为预测降水是非常复杂和受许多因素的影响。数据同化系统(DAS)旨在通过以一般方式处理来自不同来源的数据,例如加权平均值,但是直到现在,尚未用于降水预测。使用数学工具的DAS复杂,难以执行。在本文中,将机​​器学习技术引入降水数据同化系统。总结了这种方法的理论结构后,我们采取了一些实际的天气预报实验,结果表明,新系统是有效和有前途的。

著录项

  • 作者

    Jing Lu; Wei Hu; Xiakun Zhang;

  • 作者单位
  • 年度 2018
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号