首页> 外文OA文献 >Brittle crack propagation acceleration in a single crystal of a 3 silicon-Fe alloy
【2h】

Brittle crack propagation acceleration in a single crystal of a 3 silicon-Fe alloy

机译:在3%硅Fe合金的单晶中脆性裂纹繁殖加速度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Brittle fracture in carbon steel has a serious impact on the safety of steel structures. Thus, technology that arrests crack propagation is the final line of protection for such structures. It is such an important issue that conditions that can reliably stop crack propagation should be thoroughly clarified. Due to the social importance of the problem, many experimental and theoretical studies have been conducted from both the mechanical and microstructural viewpoints. Though it has been reported that the upper limit of the speed of brittle crack propagation is theoretically the Rayleigh wave speed, which is approximately 2,900 m/s in steels, the actual speed of brittle crack propagation in steels is approximately 1,000 m/s and lower. The reason for this difference is due to braking effects during crack propagation, for example, unevenness in the faceting, tear ridges, microcracking, twin deformation and side ligaments, which are the elements that dominate the arresting toughness. To evaluate the most fundamental element of the arresting toughness, the authors have studied the crack propagation resistance inside a single crystal and across a grain boundary by using a 3% silicon steel with a microstructure of single phase ferrite and a very large grain size of 4-5 mm. The crack propagation rate inside a single crystal is relatively large, but only half of the Rayleigh wave speed even under the highest stress intensity factor conditions. In this study, the change in the crack propagation rate was measured using small sized multiple-strain gauges that were pasted inside a single crystal along the crack line. From these measurements, crack propagation resistance and the role of grain boundaries are quantitatively discussed in this article
机译:碳钢中的脆性骨折对钢结构的安全产生严重影响。因此,捕获裂缝繁殖的技术是对这种结构的最终保护线。这是一个重要的问题,即可以彻底澄清可以可靠地停止裂缝扩展的条件。由于问题的社会重要性,许多实验和理论研究已经从机械和微观结构的观点进行。虽然已经报道了脆性裂纹传播速度的上限是理论上的瑞利波速度,其在钢中约为2,900米/秒,钢中脆性裂纹传播的实际速度约为1,000米/秒和更低。这种差异的原因是由于裂缝繁殖期间的制动效应,例如,刻面,泪脊,微裂纹,双变形和侧韧带的不均匀性,这是占据阻雷韧性的元素。为了评估韧性的最基本的元素,作者已经通过使用3%硅钢和单相铁素体的微结构和4的非常大的晶粒尺寸来研究单晶内部和晶界内的裂缝传播电阻。 -5 mm。单晶内的裂纹传播速率相对较大,但即使在最高应力强度因子条件下也只有瑞利波速度的一半。在该研究中,使用小尺寸的多应变仪测量裂纹传播速率的变化,其沿着裂缝线粘贴在单晶内。从这些测量中,在本文中定量讨论了裂纹传播电阻和晶界的作用

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号