首页> 外文OA文献 >Система неразрушающего контроля композиционных материалов на основе нейронных сетей ART-2 и FUZZY-ART
【2h】

Система неразрушающего контроля композиционных материалов на основе нейронных сетей ART-2 и FUZZY-ART

机译:基于神经网络ART-2和FUZZY-ART的复合材料无损检测系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Solution of the problems of standardless diagnostics of pipes requires application of data processing methods, which are oriented to a wide range of control objects, allows fast and effective diagnostics, are adapted to variation of testing conditions and permit modification of program modules without any significant changes in the main software structure. This paper is devoted to investigation and software realization of modified ART-2 and Fuzzy-ART neural networks to solve the problems of classification of defects in honeycomb panels. Developed neural networks are used in the system of standardless diagnostics of products from composite materials. Structure and operating algorithm of developed neural networks are described. Structure and main modules of the developed software for operation with the described neutral networks are also presented. The advantages of the developed neural network and system as a whole are its architecture flexibility, high performance and reliability of data processing. The paper gives the results of investigation of the developed system based on ART-2 and Fuzzy-ART networks for diagnostics of technical condition of honeycomb panels. The classifier based on the described neural networks can automatically change its settings during training, reaching the highest reliability of control at detection and classification of subsurface defects in honeycomb panels, as well as defects located on the back side of the panel of 2 cm2 area at thickness of composite panel equal to 12.8 mm. Reliability of non-destructive testing with the specified classifier is equal to 90 ? 95%.
机译:解决管道非标准诊断问题需要应用数据处理方法,该方法针对各种控制对象,可以快速有效地进行诊断,可以适应测试条件的变化,并且可以对程序模块进行修改而无任何重大更改在主要软件结构中。本文致力于研究改进的ART-2和Fuzzy-ART神经网络,并解决蜂窝板缺陷分类问题。发达的神经网络用于复合材料产品的无标诊断系统中。描述了发达的神经网络的结构和操作算法。还介绍了用于与所描述的中性网络一起运行的已开发软件的结构和主要模块。发达的神经网络和整个系统的优势在于其体系结构的灵活性,高性能和数据处理的可靠性。本文给出了基于ART-2和Fuzzy-ART网络的蜂窝板技术状态诊断系统的研究结果。基于所述神经网络的分类器可以在训练过程中自动更改其设置,从而在检测和分类蜂窝板中的表面下缺陷以及位于面板背面2 cm2区域的缺陷方面达到控制的最高可靠性。复合板的厚度等于12.8毫米。使用指定分类器的无损检测的可靠性等于90? 95%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号