首页> 外文OA文献 >Deep Learning Methods for Heart Sounds Classification: A Systematic Review
【2h】

Deep Learning Methods for Heart Sounds Classification: A Systematic Review

机译:心脏声音的深度学习方法分类:系统评价

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The automated classification of heart sounds plays a significant role in the diagnosis of cardiovascular diseases (CVDs). With the recent introduction of medical big data and artificial intelligence technology, there has been an increased focus on the development of deep learning approaches for heart sound classification. However, despite significant achievements in this field, there are still limitations due to insufficient data, inefficient training, and the unavailability of effective models. With the aim of improving the accuracy of heart sounds classification, an in-depth systematic review and an analysis of existing deep learning methods were performed in the present study, with an emphasis on the convolutional neural network (CNN) and recurrent neural network (RNN) methods developed over the last five years. This paper also discusses the challenges and expected future trends in the application of deep learning to heart sounds classification with the objective of providing an essential reference for further study.
机译:心脏声音的自动分类在心血管疾病(CVDS)的诊断中起着重要作用。随着最近引进医疗大数据和人工智能技术的推出,有一直在增加了心理声音分类的深度学习方法的发展。然而,尽管在该领域取得了重大成就,但数据不足,培训效率低,有效模型的不可用仍有局限性。旨在提高心脏声音分类的准确性,在本研究中进行了深入的系统评价和对现有的深度学习方法的分析,重点是卷积神经网络(CNN)和经常性神经网络(RNN )在过去五年中发展的方法。本文还讨论了在深度学习的应用中挑战和预期的未来趋势,目的是提供进一步研究的重要参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号