首页> 外文OA文献 >Interactive K-Means Clustering Method Based on User Behavior for Different Analysis Target in Medicine
【2h】

Interactive K-Means Clustering Method Based on User Behavior for Different Analysis Target in Medicine

机译:基于用户行为的不同分析目标在医学中的交互式k均值聚类方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Clustering algorithm as a basis of data analysis is widely used in analysis systems. However, as for the high dimensions of the data, the clustering algorithm may overlook the business relation between these dimensions especially in the medical fields. As a result, usually the clustering result may not meet the business goals of the users. Then, in the clustering process, if it can combine the knowledge of the users, that is, the doctor’s knowledge or the analysis intent, the clustering result can be more satisfied. In this paper, we propose an interactive K-means clustering method to improve the user’s satisfactions towards the result. The core of this method is to get the user’s feedback of the clustering result, to optimize the clustering result. Then, a particle swarm optimization algorithm is used in the method to optimize the parameters, especially the weight settings in the clustering algorithm to make it reflect the user’s business preference as possible. After that, based on the parameter optimization and adjustment, the clustering result can be closer to the user’s requirement. Finally, we take an example in the breast cancer, to testify our method. The experiments show the better performance of our algorithm.
机译:聚类算法作为数据分析的基础是广泛应用于分析系统的基础。但是,对于数据的高维度,聚类算法可能忽略这些维度之间的业务关系,尤其是在医疗领域。因此,通常群集结果可能不符合用户的业务目标。然后,在聚类过程中,如果它可以组合用户的知识,即医生的知识或分析意图,可以更满意聚类结果。在本文中,我们提出了一种交互式K-means聚类方法,以改善用户对结果的满足感。此方法的核心是让用户对群集结果的反馈,以优化群集结果。然后,在该方法中使用粒子群优化算法来优化参数,尤其是聚类算法中的权重设置,使其尽可能反映用户的业务偏好。之后,基于参数优化和调整,群集结果可能更接近用户的要求。最后,我们参加乳腺癌中的一个例子,以证明我们的方法。实验表明我们的算法表现更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号