首页> 外文OA文献 >Cost Forecasting of Substation Projects Based on Cuckoo Search Algorithm and Support Vector Machines
【2h】

Cost Forecasting of Substation Projects Based on Cuckoo Search Algorithm and Support Vector Machines

机译:基于Cuckoo搜索算法和支持向量机的变电站项目的成本预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate prediction of substation project cost is helpful to improve the investment management and sustainability. It is also directly related to the economy of substation project. Ensemble Empirical Mode Decomposition (EEMD) can decompose variables with non-stationary sequence signals into significant regularity and periodicity, which is helpful in improving the accuracy of prediction model. Adding the Gauss perturbation to the traditional Cuckoo Search (CS) algorithm can improve the searching vigor and precision of CS algorithm. Thus, the parameters and kernel functions of Support Vector Machines (SVM) model are optimized. By comparing the prediction results with other models, this model has higher prediction accuracy.
机译:准确预测变电站项目成本有助于提高投资管理和可持续性。它还与变电站项目的经济直接相关。集合经验模式分解(EEMD)可以将具有非静止序列信号的变量分解成显着规律性和周期性,这有助于提高预测模型的准确性。将GAUSS扰动添加到传统的Cuckoo搜索(CS)算法可以提高CS算法的搜索活力和精度。因此,优化了支持向量机(SVM)模型的参数和内核功能。通过将预测结果与其他模型进行比较,该模型具有更高的预测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号