首页> 外文OA文献 >Underwater Bearing-only and Bearing-Doppler Target Tracking Based on Square Root Unscented Kalman Filter
【2h】

Underwater Bearing-only and Bearing-Doppler Target Tracking Based on Square Root Unscented Kalman Filter

机译:仅基于Square Root Unscented Kalman滤波器的水下型轴承和轴承多普勒特目标跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Underwater target tracking system can be kept covert using the bearing-only or the bearing-Doppler measurements (passive measurements), which will reduce the risk of been detected. According to the characteristics of underwater target tracking, the square root unscented Kalman filter (SRUKF) algorithm, which is based on the Bayesian theory, was applied to the underwater bearing-only and bearing-Doppler non-maneuverable target tracking problem. Aiming at the shortcomings of the unscented Kalman filter (UKF), the SRUKF uses the QR decomposition and the Cholesky factor updating, in order to avoid that the process noise covariance matrix loses its positive definiteness during the target tracking period. The SRUKF uses sigma sampling to avoid the linearization of the nonlinear bearing-only and the bearing-Doppler measurements. To ensure the target state observability in underwater target tracking, the paper uses single maneuvering observer to track the single non-maneuverable target. The simulation results show that the SRUKF has better tracking performance than the extended Kalman filter (EKF) and the UKF in tracking accuracy and stability, and the computational complexity of the SRUKF algorithm is low.
机译:水下目标跟踪系统可以使用该轴承仅或轴承多普勒测量(被动测量),这将减少被检测到的风险保持隐蔽。根据水下目标跟踪的特征,平方根无迹卡尔曼滤波(SRUKF)算法,该算法是基于贝叶斯理论,施加到水下轴承仅和轴承多普勒非机动目标的跟踪问题。瞄准无迹卡尔曼滤波(UKF)的缺点,SRUKF使用QR分解和乔列斯基因子更新,以避免该过程噪声协方差矩阵在目标跟踪期间失去其正定性。所述SRUKF用途西格玛采样,以避免非线性轴承仅和轴承多普勒测量的线性化。为了保证在水下目标跟踪目标状态可观测性,本文采用单机动观测跟踪单个非机动目标。仿真结果表明,SRUKF具有更好的跟踪比扩展卡尔曼滤波(EKF)和UKF在跟踪精度和稳定性能,以及SRUKF算法的计算复杂度低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号