首页> 外文OA文献 >The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires
【2h】

The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires

机译:表面对GaAs纳米线瞬态太赫兹电导率和电子迁移率的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bare unpassivated GaAs nanowires feature relatively high electron mobilities (400–2100 cm$^{2}$ V$^{-1}$ s$^{-1}$) and ultrashort charge carrier lifetimes (1–5 ps) at room temperature. These two properties are highly desirable for high speed optoelectronic devices, including photoreceivers, modulators and switches operating at microwave and terahertz frequencies. When engineering these GaAs nanowire-based devices, it is important to have a quantitative understanding of how the charge carrier mobility and lifetime can be tuned. Here we use optical-pump–terahertz-probe spectroscopy to quantify how mobility and lifetime depend on the nanowire surfaces and on carrier density in unpassivated GaAs nanowires. We also present two alternative frameworks for the analysis of nanowire photoconductivity: one based on plasmon resonance and the other based on Maxwell–Garnett effective medium theory with the nanowires modelled as prolate ellipsoids. We find the electron mobility decreases significantly with decreasing nanowire diameter, as charge carriers experience increased scattering at nanowire surfaces. Reducing the diameter from 50 nm to 30 nm degrades the electron mobility by up to 47%. Photoconductivity dynamics were dominated by trapping at saturable states existing at the nanowire surface, and the trapping rate was highest for the nanowires of narrowest diameter. The maximum surface recombination velocity, which occurs in the limit of all traps being empty, was calculated as 1.3  ×  10$^{6}$ cm s$^{-1}$. We note that when selecting the optimum nanowire diameter for an ultrafast device, there is a trade-off between achieving a short lifetime and a high carrier mobility. To achieve high speed GaAs nanowire devices featuring the highest charge carrier mobilities and shortest lifetimes, we recommend operating the devices at low charge carrier densities.
机译:裸露的GaAs纳米线具有相对高的电子移动(400-2100厘米$ ^ {2} $ ^ $ { - 1} $ ^ $ ^ { - 1} $ s $ ^ { - 1} $)和房间的超短电荷运营商(1-5 ps)温度。这两种性质对于高速光电器件,包括光接收器,调制器非常需要的,并在微波和太赫兹频率下操作开关。当工程到基于GaAs纳米线的设备时,重要的是要定量地了解如何调整电荷载流动性和寿命。在这里,我们使用光学泵 - 太赫兹探针光谱,量化迁移率和寿命如何取决于纳米线表面以及未透过的GaAs纳米线中的载流子密度。我们还提出了两种替代框架,用于分析纳米线光电导性:基于等离子体共振的一个,基于Maxwell-Garnett有效介质理论,与纳米线建模的纳米线为改性椭圆形。我们发现电子迁移率随着纳米线直径而显着降低,因为电荷载体在纳米线表面的散射增加时。将50nm至30nm的直径降低,将电子迁移率降低至47%。通过在存在于纳米线表面存在的可饱和状态下捕获光电导动力,并且对于最窄直径的纳米线,捕获速率最高。最大表面重组速度,在空陷阱的限制中出现,计算为1.3×10 $ ^ {6} $ cm s $ ^ {-1} $。 We note that when selecting the optimum nanowire diameter for an ultrafast device, there is a trade-off between achieving a short lifetime and a high carrier mobility.为了实现高速GaAs纳米线器件,具有最高的电荷载流量和最短的寿命,我们建议在低电荷载体密度下操作设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号