首页> 外文OA文献 >Forecasting Generalized Quantiles of Electricity Demand: A Functional Data Approach
【2h】

Forecasting Generalized Quantiles of Electricity Demand: A Functional Data Approach

机译:预测电力需求的广义量级:功能数据方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electricity load forecasts are an integral part of many decision-making processes in the electricity market. However, most literature on electricity load forecasting concentrates on deterministic forecasts, neglecting possibly important information about uncertainty. A more complete picture of future demand can be obtained by using distributional forecasts, allowing for a more efficient decision-making. A predictive density can be fully characterized by tail measures such as quantiles and expectiles. Furthermore, interest often lies in the accurate estimation of tail events rather than in the mean or median. We propose a new methodology to obtain probabilistic forecasts of electricity load, that is based on functional data analysis of generalized quantile curves. The core of the methodology is dimension reduction based on functional principal components of tail curves with dependence structure. The approach has several advantages, such as flexible inclusion of explanatory variables including meteorological forecasts and no distributional assumptions. The methodology is applied to load data from a transmission system operator (TSO) and a balancing unit in Germany. Our forecast method is evaluated against other models including the TSO forecast model. It outperforms them in terms of mean absolute percentage error (MAPE) and achieves a MAPE of 2:7% for the TSO.
机译:电力负荷预测是电力市场中许多决策过程的组成部分。但是,大多数有关电力负荷预测的文献都集中在确定性预测上,而忽略了有关不确定性的重要信息。通过使用分布预测,可以更全面地了解未来需求,从而可以更有效地进行决策。预测密度可以通过分位数和分位数等尾部度量来完全表征。此外,人们的兴趣通常在于对尾巴事件的准确估计,而不是平均值或中位数。我们提出了一种新的方法来获得电力负荷的概率预测,该方法基于广义分位数曲线的功能数据分析。该方法的核心是基于具有依赖性结构的尾巴曲线的功能主成分进行降维。该方法具有多个优点,例如可以灵活地包含解释变量,包括气象预报,并且无需分配假设。该方法适用于从德国的传输系统运营商(TSO)和平衡单元加载数据。我们的预测方法是根据包括TSO预测模型在内的其他模型进行评估的。就平均绝对百分比误差(MAPE)而言,它的性能优于它们,并且TSO的MAPE为2:7%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号