首页> 外文OA文献 >Double-Threshold Cooperative Spectrum Sensing Algorithm Based on Sevcik Fractal Dimension
【2h】

Double-Threshold Cooperative Spectrum Sensing Algorithm Based on Sevcik Fractal Dimension

机译:基于Sevcik分形尺寸的双阈值协作频谱传感算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spectrum sensing is of great importance in the cognitive radio (CR) networks. Compared with individual spectrum sensing, cooperative spectrum sensing (CSS) has been shown to greatly improve the accuracy of the detection. However, the existing CSS algorithms are sensitive to noise uncertainty and are inaccurate in low signal-to-noise ratio (SNR) detection. To address this, we propose a double-threshold CSS algorithm based on Sevcik fractal dimension (SFD) in this paper. The main idea of the presented scheme is to sense the presence of primary users in the local spectrum sensing by analyzing different characteristics of the SFD between signals and noise. Considering the stochastic fluctuation characteristic of the noise SFD in a certain range, we adopt the double-threshold method in the multi-cognitive user CSS so as to improve the detection accuracy, where thresholds are set according to the maximum and minimum values of the noise SFD. After obtaining the detection results, the cognitive user sends local detection results to the fusion center for reliability fusion. Simulation results demonstrate that the proposed method is insensitive to noise uncertainty. Simulations also show that the algorithm presented in this paper can achieve high detection performance at the low SNR region.
机译:光谱感测在认知无线电(CR)网络中具有重要意义。与单独的频谱感测相比,​​已显示协作频谱传感(CSS),从而大大提高了检测的准确性。然而,现有的CSS算法对噪声不确定性敏感,并且在低信噪比(SNR)检测中是不准确的。为了解决这一点,我们在本文中提出了一种基于Sevcik分形维数(SFD)的双阈值CSS算法。所提出的方案的主要思想是通过分析信号和噪声之间的SFD的不同特征来感测局部光谱感测中的主要用户的存在。考虑到一定范围内噪声SFD的随机波动特性,我们在多认知用户CSS中采用双阈值方法,以提高检测精度,根据噪声的最大值和最小值设置阈值SFD。在获得检测结果之后,认知用户将本地检测结果发送到融合中心以进行可靠性融合。仿真结果表明,所提出的方法对噪声不确定性不敏感。模拟还表明,本文呈现的算法可以在低SNR区域实现高检测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号