首页> 外文OA文献 >On Capacity-Achieving Distributions for Complex AWGN Channels Under Nonlinear Power Constraints and Their Applications to SWIPT
【2h】

On Capacity-Achieving Distributions for Complex AWGN Channels Under Nonlinear Power Constraints and Their Applications to SWIPT

机译:在非线性功率约束下复杂AWGN通道的能力 - 实现分布及其应用于SWIPT

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The capacity of deterministic, complex and discrete time memoryless AdditiveWhite Gaussian Noise (AWGN) channel under three constraints, namely, channelinput average power, channel input amplitude and delivered power at the channeloutput is considered. The delivered power constraint is modelled as a linearcombination of even-moment statistics of the channel input being larger than athreshold. It is shown that the capacity of an AWGN channel under transmitaverage power and receiver delivered power constraints is the same as thecapacity of an AWGN channel under an average power constraint, however,depending on the two constraints, it can be either achieved or arbitrarilyapproached. It is also shown that under average power, amplitude and deliveredpower constraints, the optimal capacity achieving distributions are discretewith a finite number of mass points. To establish the results, the confluenthypergeometric functions as well as the output rate of decay of complexGaussian channels are utilized extensively. As an application, a simultaneousinformation and power transfer (SWIPT) problem is studied, where anexperimentally-validated nonlinear model of the harvester is used. Relying onsmall signal analysis approximation, a general form of the deliveredDirect-Current (DC) power in terms of system baseband parameters is derived forindependent and identically distributed (iid) inputs. It is shown that thedelivered power depends on higher order statistics of the channel input. Bydefining the rate-power (RP) region, two inner bounds, one based on complexGaussian inputs and the other based on convexifying the optimizationprobability space, are obtained.
机译:考虑了确定性,复杂和离散时间内记忆的确定性,复杂和离散的时间内记忆性添加剂的能力,即在三个约束下,即ChannelInput平均功率,信道输入幅度和在通道输送的电力下的通道。传递的功率约束被建模为均线输入的偶数时刻统计的线性过程大于Athreshold。结果表明,传输游戏功率和接收器交付的功率约束下的AWGN信道的容量与平均功率约束下的AWGN信道的附加度相同,但是,根据两个约束,它可以达到或任意地被逐渐覆盖。还表明,在平均功率,幅度和传递的限制下,实现了分布的最佳能力是可以分配的有限数量的质量点。为了建立结果,广泛利用融合假时测定功能以及复合哥士道探测器的输出速率。作为应用,研究了同时的信息和动力传递(SWIPT)问题,其中使用了收割机的自我验证的验证的非线性模型。依赖于onmall信号分析近似,从系统基带参数方面的传送二向电流(DC)功率的一般形式是导出的,以实现和相同分布的(IID)输入。结果表明,TheDivered功率取决于通道输入的高阶统计。通过借助于速率 - 功率(RP)区域,基于复合达ussian输入的速率功率(RP)区域,基于凸面输入的另一个内部界限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号