首页> 外文OA文献 >Adaptive sampling in context-aware systems: a machine learning approach
【2h】

Adaptive sampling in context-aware systems: a machine learning approach

机译:背景感知系统中的自适应抽样:机器学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As computing systems become ever more pervasive, there is an increasing need for them to understand and adapt to the state of the environment around them: that is, their context. This understanding comes with considerable reliance on a range of sensors. However, portable devices are also very constrained in terms of power, and hence the amount of sensing must be minimised. In this paper, we present a machine learning architecture for context awareness which is designed to balance the sampling rates (and hence energy consumption) of individual sensors with the significance of the input from that sensor. This significance is based on predictions of the likely next context. The architecture is implemented using a selected range of user contexts from a collected data set. Simulation results show reliable context identification results. The proposed architecture is shown to significantly reduce the energy requirements of the sensors with minimal loss of accuracy in context identification.
机译:随着计算系统变得越来越普及,越来越需要它们了解并适应周围环境的状态,即它们的上下文。这种理解极大地依赖于一系列传感器。但是,便携式设备在功率方面也受到很大限制,因此必须使感测量最小化。在本文中,我们提出了一种用于上下文感知的机器学习架构,该架构旨在平衡各个传感器的采样率(以及由此产生的能量消耗)与该传感器输入的重要性之间的平衡。此重要性基于对可能的下一个上下文的预测。使用从收集的数据集中选择的一系列用户上下文来实现该体系结构。仿真结果表明了可靠的上下文识别结果。所提出的架构被显示为在上下文识别中以最小的准确性损失来显着降低传感器的能量需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号