首页> 外文OA文献 >Review of Data Fusion Methods for Real-Time and Multi-Sensor Traffic Flow Analysis
【2h】

Review of Data Fusion Methods for Real-Time and Multi-Sensor Traffic Flow Analysis

机译:对实时和多传感器流量分析的数据融合方法综述

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, development in intelligent transportation systems (ITS) requires the input of various kinds of data in real-time and from multiple sources, which imposes additional research and application challenges. Ongoing studies on Data Fusion (DF) have produced significant improvement in ITS and manifested an enormous impact on its growth. This paper reviews the implementation of DF methods in ITS to facilitate traffic flow analysis (TFA) and solutions that entail the prediction of various traffic variables such as driving behavior, travel time, speed, density, incident, and traffic flow. It attempts to identify and discuss real-time and multi-sensor data sources that are used for various traffic domains, including road/highway management, traffic states estimation, and traffic controller optimization. Moreover, it attempts to associate abstractions of data level fusion, feature level fusion, and decision level fusion on DF methods to better understand the role of DF in TFA and ITS. Consequently, the main objective of this paper is to review DF methods used for real-time and multi-sensor (heterogeneous) TFA studies. The review outcomes are (i) a guideline of constructing DF methods which involve preprocessing, filtering, decision, and evaluation as core steps, (ii) a description of the recent DF algorithms or methods that adopt real-time and multi-sensor sources data and the impact of these data sources on the improvement of TFA, (iii) an examination of the testing and evaluation methodologies and the popular datasets and (iv) an identification of several research gaps, some current challenges, and new research trends.
机译:最近,智能交通系统(其)的开发需要实时和多种来源输入各种数据,这施加了额外的研究和应用挑战。正在进行的关于数据融合(DF)的研究产生了显着的改善,并对其增长产生了巨大的影响。本文综述了DF方法的实施,以促进交通流量分析(TFA)和解决方案,即需要预测各种交通变量,例如驾驶行为,旅行时间,速度,密度,事件和交通流量。它试图识别和讨论用于各种交通域的实时和多传感器数据源,包括道路/公路管理,交通状态估计和流量控制器优化。此外,它试图将数据级融合,特征级别融合和决策电平融合的抽象相关联DF方法,以更好地了解DF在TFA中的作用及其。因此,本文的主要目的是审查用于实时和多传感器(异质)TFA研究的DF方法。审查结果是(i)构建DF方法的指导方针,其涉及作为核心步骤的预处理,过滤,决定和评估,(ii)近期DF算法或采用实时和多传感器源数据的方法的描述以及这些数据来源对TFA的改进的影响,(iii)对测试和评估方法的检查和流行的数据集和(iv)的识别是若干研究差距,一些目前的挑战和新的研究趋势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号