首页> 外文OA文献 >Multiobjective Quantum Evolutionary Algorithm for the Vehicle Routing Problem with Customer Satisfaction
【2h】

Multiobjective Quantum Evolutionary Algorithm for the Vehicle Routing Problem with Customer Satisfaction

机译:客户满意度的车辆路由问题多目标量子进化算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The multiobjective vehicle routing problem considering customer satisfaction (MVRPCS) involves the distribution of orders from several depots to a set of customers over a time window. This paper presents a self-adaptive grid multi-objective quantum evolutionary algorithm (MOQEA) for the MVRPCS, which takes into account customer satisfaction as well as travel costs. The degree of customer satisfaction is represented by proposing an improved fuzzy due-time window, and the optimization problem is modeled as a mixed integer linear program. In the MOQEA, nondominated solution set is constructed by the Challenge Cup rules. Moreover, an adaptive grid is designed to achieve the diversity of solution sets; that is, the number of grids in each generation is not fixed but is automatically adjusted based on the distribution of the current generation of nondominated solution set. In the study, the MOQEA is evaluated by applying it to classical benchmark problems. Results of numerical simulation and comparison show that the established model is valid and the MOQEA is effective for MVRPCS.
机译:考虑客户满意度(MVRPCS)的多目标车辆路由问题涉及从多个仓库到一组客户的订单分发。本文为MVRPC提供了一种自适应网格多目标量子进化算法(MoQEA),考虑到客户满意度以及旅行费用。通过提出改进的模糊潜水时间窗口来表示客户满意度,并且优化问题被建模为混合整数线性程序。在Moqea中,NondoMinated解决方案集由挑战杯规则构成。此外,自适应网格设计用于实现解决方案组的多样性;也就是说,每代网格的数量不是固定的,而是基于当前生成NondoMinate解决方案集的分布自动调整。在该研究中,通过将其应用于古典基准问题来评估Moqea。数值模拟结果和比较表明,已建立的模型有效,MoQEA对MVRPC有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号