首页> 外文OA文献 >Improved Pedestrian Dead Reckoning Based on a Robust Adaptive Kalman Filter for Indoor Inertial Location System
【2h】

Improved Pedestrian Dead Reckoning Based on a Robust Adaptive Kalman Filter for Indoor Inertial Location System

机译:基于鲁棒自适应卡尔曼滤波器的适用于室内惯性定位系统的改进的行人死亡

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Pedestrian dead reckoning (PDR) systems based on a microelectromechanical-inertial measurement unit (MEMS-IMU) providing advantages of full autonomy and strong anti-jamming performance are becoming a feasible choice for pedestrian indoor positioning. In order to realize the accurate positioning of pedestrians in a closed environment, an improved pedestrian dead reckoning algorithm, mainly including improved step estimation and heading estimation, is proposed in this paper. Firstly, the original signal is preprocessed using the wavelet denoising algorithm. Then, the multi-threshold method is proposed to ameliorate the step estimation algorithm. For heading estimation suffering from accumulated error and outliers, robust adaptive Kalman filter (RAKF) algorithm is proposed in this paper, and combined with complementary filter to improve positioning accuracy. Finally, an experimental platform with inertial sensors as the core is constructed. Experimental results show that positioning error is less than 2.5% of the total distance, which is ideal for accurate positioning of pedestrians in enclosed environment.
机译:基于微机电惯性测量单元对行人的航位推算(PDR)系统(MEMS-IMU)充分自主性和很强的抗干扰性能的提供优点正在成为行人室内定位一个可行的选择。为了实现封闭环境中行人的准确定位,提出了一种改进的行人死算法,主要包括改进的步骤估计和前进估计。首先,使用小波去噪算法预处理原始信号。然后,提出了多阈值方法来改善步骤估计算法。为了恢复累积误差和异常值的估计,本文提出了鲁棒自适应卡尔曼滤波器(RAKF)算法,并与互补滤波器组合以提高定位精度。最后,构造了具有核心惯性传感器的实验平台。实验结果表明,定位误差小于总距离的2.5%,这是准确定位封闭环境中行人的理想选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号