首页> 外文OA文献 >Comparison of Nonlinear Filtering Methods for Estimating the State of Charge of Li4Ti5O12Lithium-Ion Battery
【2h】

Comparison of Nonlinear Filtering Methods for Estimating the State of Charge of Li4Ti5O12Lithium-Ion Battery

机译:非线性滤波方法估算Li4Ti5O12锂离子电池充电状态的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate state of charge (SoC) estimation is of great significance for the lithium-ion battery to ensure its safety operation and to prevent it from overcharging or overdischarging. To achieve reliable SoC estimation for Li4Ti5O12 lithium-ion battery cell, three filtering methods have been compared and evaluated. A main contribution of this study is that a general three-step model-based battery SoC estimation scheme has been proposed. It includes the processes of battery data measurement, parametric modeling, and model-based SoC estimation. With the proposed general scheme, multiple types of model-based SoC estimators have been developed and evaluated for battery management system application. The detailed comparisons on three advanced adaptive filter techniques, which include extend Kalman filter, unscented Kalman filter, and adaptive extend Kalman filter (AEKF), have been implemented with a Li4Ti5O12 lithium-ion battery. The experimental results indicate that the proposed model-based SoC estimation approach with AEKF algorithm, which uses the covariance matching technique, performs well with good accuracy and robustness; the mean absolute error of the SoC estimation is within 1% especially with big SoC initial error.
机译:准确的充电状态(SOC)估计对于锂离子电池具有重要意义,以确保其安全运行,并防止其过度充电或过度充电。为了实现对钛酸锂的锂离子电池单元可靠SOC推定,三个滤波方法进行了比较和评价。本研究的主要贡献是提出了一般的三步模型的电池SOC估计方案。它包括电池数据测量,参数化建模和基于模型的SOC估计的过程。利用所提出的一般方案,已经开发出了多种基于模型的SOC估计,并为电池管理系统应用进行了评估。在三个先进的自适应滤波器技术,其中包括延伸卡尔曼滤波器,无味卡尔曼滤波器和自适应扩展卡尔曼滤波器(AEKF)的详细的比较,已经实现了用钛酸锂的锂离子电池。实验结果表明,采用AEKF算法的基于模型的SOC估计方法,使用协方差匹配技术,具有良好的精度和鲁棒性; SOC估计的平均绝对误差在1%范围内,特别是具有大的SOC初始错误。

著录项

  • 作者

    Jianping Gao; Hongwen He;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号