首页> 外文OA文献 >A Location Selection Policy of Live Virtual Machine Migration for Power Saving and Load Balancing
【2h】

A Location Selection Policy of Live Virtual Machine Migration for Power Saving and Load Balancing

机译:节电和负载均衡实时虚拟机迁移的位置选择策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.
机译:绿色云数据中心已经成为虚拟化的云计算架构的一个研究热点。和负载均衡也一直在云数据中心最重要的目标之一。由于实时虚拟机(VM)迁移技术被广泛应用,并在云计算的研究中,我们专注于实时VM迁移的省电和负载平衡选址(移民政策)。我们提出了一种新颖的方法MOGA-LS,其是基于该改进的遗传算法(GA)启发式和自适应多目标优化算法。本文提出了MOGA-LS的具体设计和实现,如遗传操作的设计,适应值,和精英。我们已经介绍了Pareto支配理论和模拟退火(SA)的想法变成MOGA-LS,并提出了具体的过程中得到最终的解决方案,因此,整个方法实现了省电和负载平衡的长期有效的优化。实验结果表明,MOGA-LS明显降低了总增量的功耗,更好的保护虚拟机迁移的性能,并实现了与现有的研究相比,系统负载的均衡。这使得实时VM迁移更高效和有意义的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号