首页> 外文OA文献 >A GA-Based Multi-View, Multi-Learner Active Learning Framework for Hyperspectral Image Classification
【2h】

A GA-Based Multi-View, Multi-Learner Active Learning Framework for Hyperspectral Image Classification

机译:基于GA的多视图,多学习者主动学习框架,用于高光谱图像分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper introduces a novel multi-view multi-learner (MVML) active learning method, in which the different views are generated by a genetic algorithm (GA). The GA-based view generation method attempts to construct diverse, sufficient, and independent views by considering both inter- and intra-view confidences. Hyperspectral data inherently owns high dimensionality, which makes it suitable for multi-view learning algorithms. Furthermore, by employing multiple learners at each view, a more accurate estimation of the underlying data distribution can be obtained. We also implemented a spectral-spatial graph-based semi-supervised learning (SSL) method as the classifier, which improved the performance of the classification task in comparison with supervised learning. The evaluation of the proposed method was based on three different benchmark hyperspectral data sets. The results were also compared with other state-of-the-art AL-SSL methods. The experimental results demonstrated the efficiency and statistically significant superiority of the proposed method. The GA-MVML AL method improved the classification performances by 16.68%, 18.37%, and 15.1% for different data sets after 40 iterations.
机译:本文介绍了一种新型多视图多学习者(MVML)活动学习方法,其中通过遗传算法(GA)生成不同视图。基于GA的视图生成方法通过考虑介绍和内部视图间禁念来构建不同的,充分和独立的视图。高光谱数据固有地拥有高维度,这使其适用于多视图学习算法。此外,通过在每个视图处采用多个学习者,可以获得对底层数据分布的更准确的估计。我们还实现了一种基于光谱空间图形的半监督学习(SSL)方法作为分类器,其与监督学习相比,改善了分类任务的性能。所提出的方法的评估基于三个不同的基准高光谱数据集。结果也与其他最先进的AL-SSL方法进行了比较。实验结果表明了所提出的方法的效率和统计学显着的优越性。 GA-MVML AL方法在40次迭代后,不同数据集的分类性能提高了16.68%,18.37%和15.1%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号