首页> 外文OA文献 >Optimal parameter selection in Weeks’ method for numerical Laplace transform inversion based on machine learning
【2h】

Optimal parameter selection in Weeks’ method for numerical Laplace transform inversion based on machine learning

机译:基于机器学习的数周数量的LAPAPLE变换反演的最佳参数选择

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Weeks method for the numerical inversion of the Laplace transform utilizes a Möbius transformation which is parameterized by two real quantities, σ and b . Proper selection of these parameters depends highly on the Laplace space function F ( s ) and is generally a nontrivial task. In this paper, a convolutional neural network is trained to determine optimal values for these parameters for the specific case of the matrix exponential. The matrix exponential e A is estimated by numerically inverting the corresponding resolvent matrix ( s I − A ) − 1 via the Weeks method at ( σ , b ) pairs provided by the network. For illustration, classes of square real matrices of size three to six are studied. For these small matrices, the Cayley-Hamilton theorem and rational approximations can be utilized to obtain values to compare with the results from the network derived estimates. The network learned by minimizing the error of the matrix exponentials from the Weeks method over a large data set spanning ( σ , b ) pairs. Network training using the Jacobi identity as a metric was found to yield a self-contained approach that does not require a truth matrix exponential for comparison.
机译:Laplace变换数值反演的数周方法利用Möbius转换,该变换由两个真正的数量,σ和b参数化。正确选择这些参数在拉普拉斯空间函数f上高度取决于LAPPlace空间功能F(s),并且通常是一个非活动任务。在本文中,训练了卷积神经网络,以确定这些参数的最佳值,用于矩阵指数的特定情况。通过在网络提供的(Σ,B)对的周期方法通过数周地反转相应的分辨率矩阵(S I-A)-1来估计矩阵指数E A。出于插图,研究了大小三到六个大小的正方形实际矩阵。对于这些小矩阵,Cayley-Hamilton定理和理性近似可以用于获得与来自网络导出估计结果的结果进行比较的值。通过在大数据集(Σ,B)对中,通过从周方法最小化矩阵指数的错误来学习网络。发现使用Jacobi身份作为度量标准的网络培训产生自包含的方法,不需要实际矩阵指数进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号