首页> 外文OA文献 >Low-Cost and Device-Free Human Activity Recognition Based on Hierarchical Learning Model
【2h】

Low-Cost and Device-Free Human Activity Recognition Based on Hierarchical Learning Model

机译:基于分层学习模型的低成本和无设备的人类活动识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Human activity recognition (HAR) has been a vital human–computer interaction service in smart homes. It is still a challenging task due to the diversity and similarity of human actions. In this paper, a novel hierarchical deep learning-based methodology equipped with low-cost sensors is proposed for high-accuracy device-free human activity recognition. ESP8266, as the sensing hardware, was utilized to deploy the WiFi sensor network and collect multi-dimensional received signal strength indicator (RSSI) records. The proposed learning model presents a coarse-to-fine hierarchical classification framework with two-level perception modules. In the coarse-level stage, twelve statistical features of time–frequency domains were extracted from the RSSI measurements filtered by a butterworth low-pass filter, and a support vector machine (SVM) model was employed to quickly recognize the basic human activities by classifying the signal statistical features. In the fine-level stage, the gated recurrent unit (GRU), a representative type of recurrent neural network (RNN), was applied to address issues of the confused recognition of similar activities. The GRU model can realize automatic multi-level feature extraction from the RSSI measurements and accurately discriminate the similar activities. The experimental results show that the proposed approach achieved recognition accuracies of 96.45% and 94.59% for six types of activities in two different environments and performed better compared the traditional pattern-based methods. The proposed hierarchical learning method provides a low-cost sensor-based HAR framework to enhance the recognition accuracy and modeling efficiency.
机译:人类活动识别(HAR)已经在智能家居的一个重要的人机交互服务。它仍然是一个具有挑战性的任务,由于人类活动的多样性和相似性。在本文中,配备了低成本的传感器,一个新的层次深学习型方法,提出了高精度无设备,人类活动的认可。 ESP8266,作为感测硬件,被利用来部署所述WiFi传感器网络和收集多维接收信号强度指示器(RSSI)的记录。所提出的学习模型呈现两级感知模块由粗到细的层次分类框架。在粗级阶段,时间 - 频率域的12个统计特征是从由一个巴特沃斯低通滤波器滤波的RSSI测量萃取,支持向量机被采用(SVM)模型,以通过分级快速地识别人的基本活动信号统计特征。在微细水平阶段,门控重复单元(GRU),具有代表性的类型回归神经网络(RNN)的,施加到困惑识别类似活动的地址的问题。的GRU模型可以实现由RSSI测量自动多级特征提取和准确区分类似的活动。实验结果表明,该方法实现了96.45%和六类两种不同的环境中活动,94.59%的识别精度和更好地执行相比传统的基于模式的方法。所提出的分层学习方法提供基于传感器的低成本HAR框架,以增强识别精度和建模效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号