首页> 外文OA文献 >Single-source-precursor synthesis and phase evolution of SiC-TaC-C ceramic nanocomposites containing core-shell structured TaC@C nanoparticles
【2h】

Single-source-precursor synthesis and phase evolution of SiC-TaC-C ceramic nanocomposites containing core-shell structured TaC@C nanoparticles

机译:含核 - 壳结构TAC甲基甲基颗粒的SiC-TAC-C陶瓷纳米复合材料的单源 - 前体合成及相位演化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract A novel single-source-precursor for SiC-TaC-C nanocomposites was successfully synthesized by the chemical reaction between a polycarbosilane (allylhydridopolycarbosilane, AHPCS) and tantalum(V) chloride (TaCl5), which was confirmed by Fourier transform infrared spectra (FTIR) measurement. After pyrolysis of the resultant single-source-precursors at 900 °C, amorphous ceramic powders were obtained. The 900 °C ceramics were annealed at different temperatures in the range of 1200–1600 °C to gain SiC-TaC-C nanocomposites. The phase evolution of ceramic nanocomposites was investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results indicate that the TaC starts to crystallize at lower temperature than the β-SiC. It is particularly worth pointing out that the unique core-shell structured TaC@C nanoparticles were in-situ formed and homogeneously distributed in the ceramic matrix after annealing at 1400 °C. Even at a high temperature of 1600 °C, the grain sizes of β-SiC and TaC are smaller than 30 nm, fulfilling the definition of nanocomposites. The present study related to SiC-TaC-C nanocomposites paves a new road for enriching ultra-high temperature ceramic family suitable for structural/functional applications in harsh environment.
机译:摘要通过聚氨基硅烷(烯丙基萘碳硅烷,AHPCS)和氯化钽(v)(β5)之间的化学反应成功地合成了一种用于SiC-Tac-C纳米复合材料的新型单源 - 前体(氯化物(v)(Tacl5),该化学反应被傅里叶变换红外光谱证实(FTIR ) 测量。在900℃下溶解所得单源前体后,得到无定形陶瓷粉末。在1200-1600℃范围内的不同温度下退火900℃陶瓷,以获得SiC-TaC-C纳米复合材料。通过X射线衍射(XRD)和透射电子显微镜(TEM)研究了陶瓷纳米复合材料的相位演化。结果表明,TAC开始在较低温度下比β-SiC结晶。特别值得注意的是,在1400℃下退火后,独特的核壳结构化TAC @ C纳米颗粒在陶瓷基质中形成和均匀分布。即使在1600℃的高温下,β-SiC和TAC的晶粒尺寸也小于30nm,满足纳米复合材料的定义。与SiC-TAC-C纳米复合材料相关的本研究铺设了一种用于富集超高温陶瓷家族的新道路,适用于恶劣环境中的结构/功能应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号