首页> 外文OA文献 >Space Independent Image Registration Using Curve-Based Method with Combination of Multiple Deformable Vector Fields
【2h】

Space Independent Image Registration Using Curve-Based Method with Combination of Multiple Deformable Vector Fields

机译:空间独立的图像注册使用基于曲线的方法,其中多个可变形矢量字段的组合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes a novel curve-based or edge-based image registration technique that utilizes the curve transformation function and Gaussian function. It enables deformable image registration between images in different spaces, e.g., different color spaces or different medical image modalities. In particular, piecewise polynomial fitting is used to fit a curve and convert it to the global cubic B-spline control points. The transformation between the curves in the reference and source images are performed by using these control points. The image area is segmented with respect to the reference curve for the moving pixels. The Gaussian function, which is symmetric about the coordinates of the points of the reference curve, was used to improve the continuity in the intra- and inter-segmented areas. The overall result on curve transformation by means of the Hausdroff distance was 5.820 ± 1.127 pixels on average on several 512 × 512 synthetic images. The proposed method was compared with an ImageJ plugin, namely bUnwarpJ, and a software suite for deformable image registration and adaptive radiotherapy research, namely DIRART, to evaluate the image registration performance. The experimental result shows that the proposed method yielded better image registration performance than its counterparts. On average, the proposed method could reduce the root mean square error from 2970.66 before registration to 1677.94 after registration and can increase the normalized cross-correlation coefficient from 91.87% before registration to 97.40% after registration.
机译:本文提出了一种新颖的基于曲线或边缘的图像配准技术,其利用曲线变换函数和高斯函数。它能够在不同空间中的图像之间进行可变形的图像配准,例如不同的颜色空间或不同的医学图像模态。特别地,分段多项式拟合用于拟合曲线并将其转换为全局立方B样条控制点。通过使用这些控制点来执行参考和源图像中的曲线之间的变换。相对于移动像素的参考曲线分段图像区域。关于参考曲线点坐标对称的高斯函数用于改善内部和分段间区域中的连续性。通过HAUSDROFF距离的曲线变换的总体结果平均为5.820±1.127像素,平均为几个512×512合成图像。将所提出的方法与IMAGEJ插件,即Bunwarpj和可变形图像配准和自适应放射治疗研究的软件套件进行比较,即DIRATE,以评估图像配准性能。实验结果表明,该方法比其对应物产生更好的图像配准性能。平均而言,该方法可以在注册后向1677.94进行注册前从2970.66减少从2970.66的根均线误差。在注册后注册前的91.87%,可以将标准化的互相关系数从91.87%增加到97.40%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号