首页> 外文OA文献 >MEASUREMENT ACCURACY ON 3D POINT CLOUD GENERATED USING MULTISPECTRAL IMAGERY BY DIFFERENT CALIBRATION METHODS
【2h】

MEASUREMENT ACCURACY ON 3D POINT CLOUD GENERATED USING MULTISPECTRAL IMAGERY BY DIFFERENT CALIBRATION METHODS

机译:使用不同校准方法使用多光谱图像产生的3D点云测量精度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The state-of-the-art lightweight multispectral cameras are widely used for low altitude remote sensing, also can be exploited as a tool for close-range photogrammetry application. The acquired imagery can be used for generating the 3D model using Structure-from-Motion/ Multi-view Stereo (SfM/MVS) processing software. In photogrammetry, camera calibration is an essential step for accurate measurement. The parameter of the camera system can be estimated using photogrammetric self-calibration bundle-adjustment, or by automatic and straightforward calibration procedure developed by computer vision (CV) community. When using SfM/MVS photogrammetry software, the pre-calibration value is not required, as the algorithm calculates the parameter as a part of point cloud construction process. Nevertheless, processing with the uncalibrated image is only suitable when no metric accuracy required in the modelling project. This paper aims to evaluate the measurement accuracy on generated 3D point cloud based on different estimated parameter method. The evaluation of measurement accuracy started by estimates the camera’s interior parameter using two different approaches; photogrammetric self-calibration bundle-adjustment and computer vision calibration. The estimated parameter from both methods then imported into commercial SfM/MVS software to construct the 3D point cloud. The point cloud also generated using uncalibrated images and used for measurement accuracy assessment. All parameters applied to the same datasets involved three different check-fields. Two accuracy assessments were performed by comparing the check-points and check-distance extracted with the total station measurement. As a result, the point cloud generated using photogrammetric approach provides the most accurate result on both assessments. While the automatic on-the-job self-calibration shows inconsistent results.
机译:的状态的最先进的轻质多光谱照相机被广泛地用于低空遥感,也可以利用作为近景摄影应用的工具。所获取的图像可被用于产生用结构从 - 运动/多视点立体(SFM / MVS)处理软件的3D模型。在摄影测量,相机校准是准确测量的必要步骤。相机系统的参数可以利用摄影自校准束调整,或者通过计算机视觉(CV)团体开发自动和直接的校准过程来估计。当使用SFM / MVS摄影软件,则不需要预校准值,作为算法计算参数作为点云施工过程的一部分。然而,与未经校正的图像处理时,在建模项目不需要指标精度只适合。本文旨在评估基于不同的估计的参数的方法上产生的三维点云的测量精度。通过测算采用两种不同的方法在相机的内部参数,开始测量精度的评价;摄影自校准捆绑调节和计算机视觉校准。从两种方法估计的参数,然后导入到商业SFM / MVS软件来构建三维点云。点云还使用未校准的图像生成并用于测量精度评估。应用于同一个数据集的所有参数涉及到三个不同的检查领域。两个精度评估是通过比较总站测量提取出的检测点和检查的距离内进行。其结果是,利用摄影方法提供在两个评估最准确的结果而生成的点云。虽然自动对在职自校准显示不一致的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号