首页> 外文OA文献 >Automated Training Data Generation for Microscopy Focus Classification
【2h】

Automated Training Data Generation for Microscopy Focus Classification

机译:用于显微镜焦点分类的自动培训数据生成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Image focus quality is of utmost importance in digital microscopes because the pathologist cannot accurately characterize the tissue state without focused images. We propose to train a classifier to measure the focus quality of microscopy scans based on an extensive set of image features. However, classifiers rely heavily on the quality and quantity of the training data, and collecting annotated data is tedious and expensive. We therefore propose a new method to automatically generate large amounts of training data using image stacks. Our experiments demonstrate that a classifier trained with the image stacks performs comparably with one trained with manually annotated data. The classifier is able to accurately detect out-of-focus regions, provide focus quality feedback to the user, and identify potential problems of the microscopy design. © 2010 Springer-Verlag.
机译:图像焦点质量在数字显微镜中至关重要,因为病理学家不能准确地表征组织状态而没有聚焦的图像。我们建议培训分类器,以根据广泛的图像特征来测量显微镜扫描的焦点质量。然而,分类器严重依赖培训数据的质量和数量,并收集注释数据是乏味和昂贵的。因此,我们提出了一种新方法,可以使用图像堆栈自动生成大量培训数据。我们的实验表明,用图像堆叠训练的分类器比较可与手动注释数据训练的相对操作。分类器能够准确地检测焦点区域,为用户提供焦点质量反馈,并识别显微镜设计的潜在问题。 ©2010 Springer-Verlag。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号