首页> 外文OA文献 >Simultaneous Wood Defect and Species Detection with 3D Laser Scanning Scheme
【2h】

Simultaneous Wood Defect and Species Detection with 3D Laser Scanning Scheme

机译:三维激光扫描方案同时木缺陷和物种检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wood grading and wood price are mainly connected with the wood defect and wood species. In this paper, a wood defect quantitative detection scheme and a wood species qualitative identification scheme are proposed simultaneously based on 3D laser scanning point cloud. First, an Artec 3D scanner is used to scan the wood surface to get the 3D point cloud. Each 3D point contains its X, Y, and Z coordinate and its RGB color information. After preprocessing, the Z coordinate value of current point is compared with the set threshold to judge whether it is a defect point (i.e., cavity, worm tunnel, and crack). Second, a deep preferred search algorithm is used to segment the retained defect points marked with different colors. The integration algorithm is used to calculate the surface area and volume of every defect. Finally, wood species identification is performed with the wood surface’s color information. The color moments of scanned points are used for classification, but the defect points are not used. Experiments indicate that our scheme can accurately measure the surface areas and volumes of cavity, worm tunnel, and crack on wood surface with measurement error less than 5% and it can also reach a wood species recognition accuracy of 95%.
机译:木材分级和木材价格主要与木材缺陷和木材物种相连。本文基于3D激光扫描点云同时提出了一种木缺陷定量检测方案和木材物种定性识别方案。首先,使用ARTEC 3D扫描仪扫描木材表面以获得3D点云。每个3D点包含其x,y和z坐标及其RGB颜色信息。在预处理之后,将当前点的Z坐标值与设定的阈值进行比较,以判断它是缺陷点(即,腔,蜗杆隧道和裂缝)。其次,深度优选的搜索算法用于将标记为不同颜色的保留缺陷点。集成算法用于计算每个缺陷的表面积和体积。最后,使用木材表面的颜色信息进行木材物种识别。扫描点的颜色矩用于分类,但不使用缺陷点。实验表明,我们的方案可以准确地测量腔体,蠕虫隧道和裂缝的表面积和裂缝,测量误差小于5%,它也可以达到95%的木材物种识别准确度。

著录项

  • 作者

    Zhao Peng; Li Yue; Ning Xiao;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号